Proof-of-Principle: CRISPR-Cas9 Gene Editing for the Treatment of Immune Disorders

Elliott E.K., Bradshaw G., Rishi G., Wallace D., Sutherland H.G., Haupt L.M., Griffiths L.R.

Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences Queensland University of Technology, 60 Musk Avenue, Kevin Grove, Brisbane, QLD 4059

RESULTS TO DATE

- Achieved 60% cleavage efficiency of the SNV, 3 bases away from the C>T.
- Achieved 80% cell viability, C>T editing and HDR DNA repair using a ss-donor template.

BACKGROUND

Lymphoma is the 5th most common cancer in Australasia. Incidence rates have doubled over the past 20 years with approximately 6000 new cases diagnosed each year in Australia.

- Tet methylcytosine dioxygenase 2 (TET2) and Moesin (MSN) have a role in both NHL and immunodeficiency, as established in a Proband with a c.511C>T, p.Arg171Trp substitution in MSN, diagnosed with Primary Immunodeficiency Disorder (PID) resulting in T and B cell lymphopenia.
- To date CRISPR-Cas9 gene editing of point mutations in TET2 and MSN in human lymphocytes is yet to be established.

DISCUSSION

- Our findings may establish a proof-of-principle for editing disease-causing genes implicated in NHL and PID target genes which may be used for ex-vivo gene therapy as an alternative to standard of care bone marrow transplantation.

FUTURE DIRECTIONS

- Perform clonal isolation then replicate the application in donor derived lymphocytes.
- Investigate the functional impact of insufficient MSN and TET2 proteins.

METHODS

- Figure 1: Assay designed to correct C>T to replicate the mutation in reverse using CRISPR-Cas9 RNP complex and a ss-donor repair oligonucleotide to encourage homology directed repair (HDR) of the edited strand. Genomic cleavage detection assay and Sanger sequencing was used to detect the edit.

RESULTS TO DATE

- Achieved 60% cleavage efficiency of the SNV, 3 bases away from the C>T.
- Achieved 80% cell viability, C>T editing and HDR DNA repair using a ss-donor template.

Figure 2: Image of Genomic Cleavage Detection, optimized for MSN gRNA PCR products.

Figure 3: Sanger sequencing trace showing the edited DNA strand with a population of C>T nucleotides.