Defining tubular cell death in chronic kidney disease

Kurt Giuliani1-3, Anca Grivei1-2, Purba Nag1-2, Xiangju Wang1-2, Jacobus Ungerer2-3, Josephine M. Forbes3-4, Andrew J. Kassianos1-3 and Helen Healy1-3

1Kidney Health Service, RBWH; 2Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland; 3Faculty of Medicine, University of Queensland; 4Mater Research Institute, TRI

This research was supported by funds from Pathology Queensland, the Kidney Research Foundation and National Health and Medical Research Council (NHMRC) Project Grants (GNT1099222 and GNT1161319). K.G. is supported by an Australian Government Research Training Program (RTP) Scholarship. We also wish to thank the tissue donors for provision of renal bio-specimens.

For further information, please contact A/Prof Helen Healy (Helen.Healy@health.qld.gov.au)

Introduction

1. What damage associated molecular patterns (DAMPs) are released from hypoxic PTEC?
2. Which of these DAMPs elicits an innate immune response?

Methodology

PTEC undergo ferroptotic cell-death under in vitro hypoxic conditions

Significantly increased PTEC mitochondrial oxidative stress and necrosis under in vitro hypoxic conditions

Elevated lipid peroxidation products in primary PTEC under in vitro hypoxic conditions

Summary

Ferroptosis is the predominant tubular cell-death pathway under the hypoxic conditions of Chronic Kidney Disease

Future Work

1. What damage associated molecular patterns (DAMPs) are released from hypoxic PTEC?
2. Which of these DAMPs elicits an innate immune response?