Introduction: Bowel cancer is the second biggest cancer killer in Australia with over 4000 death from the disease yearly. It is a heterogenous disease and subtyping cancer types into more homogenous subgroups is used to determine appropriate treatment for patients and associated with better survival rates. For bowel cancer a few molecular alterations have made it into clinical practice, however accurate subgrouping has not yet made it to clinical applicability for this cancer type. Around 40% of patients with bowel cancer have a mutation in the KRAS gene, which is a gene found in the MAPKinase pathway, a pathway commonly altered in many cancer types. These patients are not only excluded from receiving anti-EGFR therapy such as cetuximab in the metastatic setting but also have a markedly variable and unpredictable response to standard chemotherapy regimens. The purposes of this study was to identify whether KRAS mutant bowel cancer could be further subtyped in more homogenous groups.

Methodology: We analysed transcriptomic data of 481 KRAS mutant cancers from seven independent cohorts including a TCGA discovery cohort (n=162) and an Affymetrix U133 Plus 2.0 array validation cohort (n=319 samples). Data was normalized for batch artifacts using the COMBAT R package and gene expression (KM) subtypes identified by non-negative matrix factorization. Samples were CMS classified using the CMSCaller R package. We performed single sample gene set enrichment (ssGSEA) projections to assess pathway level differences. We also compared clinico-pathological and molecular correlates. We used the Limma R package for statistical analyses of ssGSEA data and X2 or students T-tests for clinical data.

Results: KRAS mutant colorectal cancers segregated based on transcriptional signatures into two subgroups which we have termed KRAS-mutant-cluster-1/KM1 and KRAS-mutant-cluster-2/KM2. We observed a significantly reduced 5 year overall survival rate for patients with KM2 cancer compared to those with a KM1 cancer (Cox proportional hazard P<0.03). Our single sample gene set enrichment analysis (ssGSEA) highlighted differences based on KM clusters such as EMT activation and TGF-beta activation.

Conclusion: Here we show striking segregation of KRAS mutant cancers into two subgroups, KM1 and KM2. This is a step towards more accurate bowel cancer subtyping with the intention to guide prognosis, aid prediction of treatment response to currently available agents, and provide novel targets for adjuvant therapy.