Functional genomics of MRKH syndrome

Ella Thomson¹, Gorjana Robevska², Rebecca Deans³, Alla Vash-Margita⁴, Miranda Margetts⁵, Katie Ayers⁶, Andrew Sinclair⁷, Peter Koopman⁸, Emanuele Pelosi¹,²,⁶

¹) The University of Queensland, Centre for Clinical Research. 2) The Murdoch Children’s Research Institute. 3) University of New South Wales. 4) Yale University, USA. 5) Montana University, USA. 6) The University of Queensland, Institute for Molecular Bioscience

Introduction

MRKH syndrome: incomplete development of the female reproductive tract (FRT), 1:4500 women. Genetics of MRKH is unknown. Type I: only FRT is affected. Type II: additional malformations are present, mostly involving the kidney.

Methods

Functional genomics: clinic to lab to discover condition-causing genes

- Whole Exome Sequencing
- DNA Microarrays
- Animal models
- Candidate genes
- Functional validation

Results

Uterine hypoplasia

- Control
- Hnf1b KO

Kidney agenesis

- Control
- Hnf1b KO

Lack of uterine basal lamina

Uterus is comprised of nine cell types

Conclusions

This is the first functional genomic analysis for MRKH syndrome achieved by leveraging a top-down approach from patients samples to laboratory benchwork. Identification of Hnf1b led to the development of the first mouse model of MRKH type II: hypoplastic uterus and unilateral kidney agenesis. Single-cell RNA Seq analysis shows specific mechanisms involved in MRKH pathogenesis. This study demonstrates a translational approach to solve complex medical problems and develop new clinical strategies.