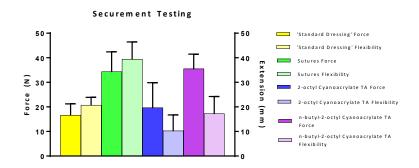
6 - 10 September 2021 **Education Centre RBWH**

DISC-0011

In vitro testing of cyanoacrylate tissue adhesives and sutures for extracorporeal membrane oxygenation cannula securement

India Pearse¹, Nicole Bartnikowski¹, Amanda Corley², John F Fraser¹ ¹Critical Care Research Group, TPCH; ²Nursing & Midwifery Research Centre, RBWH

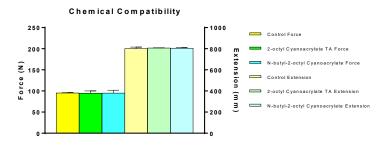
BACKGROUND


Extracorporeal membrane oxygenation (ECMO) is delivered via large-bore cannulae which must be effectively secured to avoid complications including cannula migration, dislodgement & accidental decannulation.

This study aimed to determine the safety & efficacy of two TA formulations for use in ECMO cannula securement & compare TA securement to 'standard' methods.

METHODS

This in vitro project assessed: 1) the tensile strength & flexibility of TA formulations compared to 'standard' securements using a porcine skin model & 2) chemical resistance of the cannulae to TA. An Instron 5567 Universal Testing System was used for both experiments.


RESULTS

Sutures & n-butyl-2-octyl cyanoacrylate TA both significantly increased force required to dislodge the cannula compared to standard dressing & 2-octyl cyanoacrylate TA.

There was **no difference in flexibility** between 2-octyl & nbutyl-2-octyl cyanoacrylate TAs.

The resistance strength of cannula polyurethane was not weakened after exposure to either TA after 60 mins compared to control.

CONCLUSIONS

TA appears to be a promising adjunct method of ECMO cannula insertion site securement.

Further clinical research is still needed in this area.

