Healthcare Innovations How practice has changed

HERSTON HEALTH PRECINCT SYMPOSIUM 2021

DISC-0012

6 - 10 September 2021 Education Centre RBWH

Automated detection of cerebral microbleeds without training samples using synthetic data

Saba Momeni¹, Amir Fazlollahi², Paul Yates³, Christopher Rowe⁴, Yongsheng Gao⁵, Alan Wee-Chung Liew⁵, and Olivier Salvado¹

Goal: Investigate whether generating synthetic lesion can improve automated detection using machine learning

Background:

- Cerebral Microbleeds (CMB) are hemosiderin deposits caused by structural abnormalities of the blood vessels, leading to brain dysfunctions, stroke and Alzheimer disease.
- Clinical observation of CMB is tedious, time consuming, and subjective.
- Automatic CMB detection algorithms suffer from high false positive and low sensitivity.

Challenges of automatic CMB detection:

- CMB are similar to blood vessel cross-sections
- Big enough training dataset is difficult to obtain
- CMB prevalence is low

Synthetic Microbleed generation

Fig. 1. Different steps of proposed synthetic CMB generation model.

Proposed synthetic Microbleed samples on the SWI image

Fig. 2. Samples of proposed sCMB. Different shapes, sizes and locations are shown in an axial plane. The volumes are varied from 0.8 to 20 mm3.

pathology

queensland

CMB classification results

Table 1.	Result of	whole SWI	CMB detection	n for 95%	sensitivity.

Training model	results for 8,000 samples			
	AUC	Spe	#FP/	
			scan	
M1 (training on rCMB)	0.995±	0.981±	208.4±	
	0.0003	0.0047	45	
M2 (training on sCMB)	0.997±	0.992±	86.7±	
	0.0007	0.0007	7	
M3 (training on Aug)	0.997±	0.990±	110.8±	
	0.0007	0.0013	14	
M4 (training on SMOTE)	0.998±	0.992±	85.6±	
	0.0008	0.0004	6	

AUC: area under ROC curve; Spe: specificity; FP: false positives; rCMB: real CMB; sCMB: synthetic CMB; Aug: augmented real CMB; SMOTE: synthetic minority oversampling technique.

Results and Discussion: In conclusion, synthetic microbleeds generation is a powerful data augmentation approach and should be considered for training automated lesion detection system from MRI SWI.

Fig. 3. Comparing ROC and FROC curve from 4 different training models for CMB detection on whole SWI.

4Data61, Brisbane, Australia, ²CSIRO Health and Biosecurity, Australian E-Health Research Centre, Brisbane, Australia, ³Department of Aged Care, Austin Health, Heidelberg, Victoria, Australia, ⁴Department of Nuclear Medicine and Centre for PET, Austin Health Heidelberg, Australia, ⁵Department of Engineering, Griffith University, Brisbane, Australia, ⁴Department of Nuclear Medicine and Centre for PET, Austin Health Heidelberg, Australia, ⁵Department of Engineering, Griffith University, Brisbane, Australia, ⁴Department of Nuclear Medicine and Centre for PET, Austin Health Heidelberg, Australia, ⁵Department of Aged Care, Austin Health, Heidelberg, Victoria, Australia, ⁴Department of Nuclear Medicine and Centre for PET, Austin Health Heidelberg, Victoria, Australia, ⁴Department of Nuclear Medicine and Centre for PET, Austin Health Heidelberg, Australia, ⁴Department of Aged Care, Austin Health, Heidelberg, Victoria, Australia, ⁴Department of Nuclear Medicine and Centre for PET, Austin Health Heidelberg, Australia, ⁴Department of Nuclear Medicine and Centre for PET, Austin Health Heidelberg, Australia, ⁴Department of Aged Care, Australia, ⁴Department of Nuclear Medicine and Centre for PET, Austin Health Heidelberg, Victoria, Australia, ⁴Department of Nuclear Medicine and Centre for PET, Austin Health Heidelberg, Victoria, Australia, ⁴Department of Nuclear Medicine and Centre for PET, Austin Health Heidelberg, Victoria, Australia, ⁴Department of Nuclear Medicine and Centre for PET, Australia, ⁴Department of Nuclear Medicine and Centre for PET, Australia, ⁴Department of Nuclear Medicine and Centre for PET, Australia, ⁴Department of Nuclear Medicine and Centre for PET, Australia, ⁴Department of Nuclear Medicine and Centre for PET, Australia, ⁴Department of Nuclear Medicine and Centre for PET, Australia, ⁴Department of Nuclear Medicine and Centre for PET, Australia, ⁴Department of Nuclear Medicine and Centre for PET, Australia, ⁴Department of Nuclear Medicine and Centre

THE UNIVERSITY

OF QUEENSLAND

AUSTRALIA