Healthcare Innovations How practice has changed

HERSTON HEALTH PRECINCT SYMPOSIUM 2021 **DISC-0035**

6 - 10 September 2021 **Education Centre** RBWH

Static compression optical coherence elastography to measure mechanical properties of soft contact lenses

Zachery Quince, David Alonso-Caneiro, Scott A. Read, Michael J. Collins

Contact Lens and Visual Optics Laboratory, School of Optometry and Vision Science, Queensland University of Technology

Purpose

- Understanding the mechanical properties of the eye is important since changes in mechanical properties are known to occur in a range of eye diseases and following surgical procedures. Currently, there is no clinical method for comprehensively evaluating the eye's mechanical properties.
- Optical coherence tomography (OCT) imaging has ** revolutionized eye research and clinical care.
- Elastography is a method of determining the * mechanical properties of a material through deforming with a known force and measuring its displacement through sequential images. The principles of elastography can be applied using OCT imaging to create optical coherence elastography (OCE) (Fig 1).
- OCE methods typically require sophisticated modifications to OCT instruments. This study aims to create a method to measure the mechanical properties of a material using a clinical OCT instrument and without the use of complex electronics to measure applied forces, such that it may be translated into a clinical setting for in vivo measures in the future.

Fig 1. Elastography principle. Pre-loaded on the left and compressed on the right.

- Several soft contact lens materials with well defined biomechanics were used as a phantoms to mimic ocular tissue.
- Two contact lenses (one of known properties acting as a stress sensor and the other under investigation) were placed on top of one another and were compressed by a glass plate.
- Sequential high resolution crosssectional images were captured with OCT during pre-load (baseline) and under compressive load (~10% strain).

 $E = \sigma/\epsilon$ Eq (1), $\sigma_1 = \sigma_2$ Eq (2)

pathology

queensland

dical Research Institute

QUT

THE UNIVERSITY OF QUEENSLAND CREATE CHANGE

The thickness of the contact lenses was derived through automatic boundary segmentation to measure the strain during compression (Fig 2).

- The stress (σ) of the top contact lens of * known properties (stress sensor) under compression was found by rearranging Eq 1.
- This stress was then mapped onto the ** second lens (bottom), assuming Eq 2. Its Young's modulus (E) was then found using Eq 1.

(MPa)				
Stress sensor material	Tested material	Nominal	Mean ± STD	Percentage Difference (%
Omafilcon A	Omafilcon A	0.40	0.426 ± 0.027	6.238
Senofilcon A	Senofilcon A	0.73	0.729 ± 0.013	0.077
Lotrafilcon B	Lotrafilcon B	1.20	1.207 ± 0.029	0.777
Omafilcon A	Senofilcon A	0.73	0.724 ± 0.036	0.809
Senofilcon A	Lotrafilcon B	1.20	1.183 ± 0.192	2.400

Results Table 1. Young's Modulus of Five Contact Lens Materials Tested

- All measured values showed close agreement with ** the nominal values (Table 1).
- There was minimal variation in repeated ** measurements, with the standard deviation less than 0.2 MPa for all contact lenses.

Conclusions

- Results demonstrate that a compression based ** OCE method can accurately measure the mechanical properties of a material without the use of a force sensor.
- This proof of principle, provides the foundation for * future testing using ocular tissue.

