Healthcare Innovations How practice has changed

HERSTON HEALTH PRECINCT SYMPOSIUM 2021

6 - 10 September 2021 Education Centre RBWH

TRAN-0024

Characterisation of a Paediatric Porcine Model of the Microcirculation and Coagulopathy in Traumatic Haemorrhagic Shock Raushan Lala, Dr Wendy Goodwin, Professor Mark Midwinter, Traumatic Injury Sciences Group, The University of Queensland

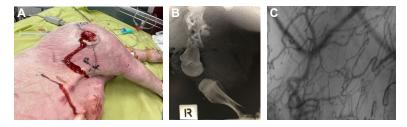

Background and Methods

Injury is a significant contributor to mortality and morbidity

- Traumatic injury complicated by haemorrhagic shock results in microcirculatory dysfunction
- Microcirculatory dysfunction causes tissue hypoperfusion and may contribute to coagulopathy induction
- Temporal profiles of microcirculatory behaviour and coagulation function (in systemic and portal circulations) during traumatic haemorrhagic shock is unclear

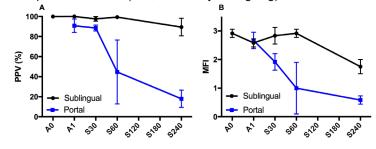
Characterise a paediatric porcine model of traumatic haemorrhagic shock to examine microcirculatory and coagulation function

- Ten female landrace pigs (20kg, 8 weeks)
- Surgery involved splenectomy, portal vein catheterisation, colon exposure (portal microcirculatory imaging)
- · Femoral fracture and haemorrhage to 40 mmHg MAP
- · Standardised panel of measurements during four hour observation


pathology

queensland

QUI


Standardised femoral fracture and videomicroscopy techniques

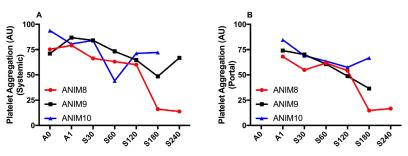
- Hind limb injury (A) induced using cattle stunner with radiographic fracture confirmation (B)
- Microcirculation imaged at sublingual (C) and mucosal vascular beds

Sublingual and portal microcirculation behaved differently

 Reductions in proportion of perfused vessels (PPV) and microvascular flow index (MFI) were greater and occurred earlier in the portal circulation (n=1, data analysis ongoing)

THE UNIVERSITY

OF QUEENSLAND


AUSTRALIA

CREATE CHANGE

Results

Marked reductions in platelet function during shock

- Reduced aggregation response to ADP agonism
- Similar trend in the systemic (A) and portal (B) circulation

Conclusion

Developed a reproducible paediatric porcine model of trauma and severe haemorrhagic shock

- Facilitates examination of microcirculatory and coagulopathic responses to shock in systemic and portal circulations
- Model will be used to examine responses to variable shock time and resuscitation fluids (plasma and crystalloid)
- Wide reaching applications as a framework for future translational trauma research for mechanistic basis of coagulopathy and potential intervention strategies

