Clinical Genetics in Healthcare

Brisbane South PHN
12th Feb 2019
Dr Chirag Patel
Clinical Geneticists
Genetic Health Queensland
Brisbane
Overview – General Genetics

- Basic principles
 - Genetics 101

- Genetics in primary care
 - Roles, pedigree taking, referrals

- Clinical genetics service
 - Referral pathway, patient pathway in service

- Genetic testing
 - Indications, types, limitations, costs, interpretation

- Reproductive genetics
 - Preconception carrier screening, NIPT, prenatal genetic tests, PGD

- Ethical, social, and legal issues
 - Predictive/presymptomatic testing, consent, insurance
Basic Principles
Spectrum of genetic diseases

- Genetic disease and congenital malformations - **4-5% live births**
- Chronic disease with a major genetic component - **10% adults**

- Haemophilia
- Osteogenesis Imperfecta
- Duchenne musculoskeletal dystrophy
- Cystic Fibrosis
- Club foot
- Pyloric stenosis
- Dislocation of hip
- Peptic ulcer
- Diabetes
- Schizophrenia
- Tuberculosis
- Scurvy
- Spina bifida
- Ischaemic heart disease
- Ankylosing spondylitis
- Phenylketonuria
- Galactosaemia

Genetic Health Queensland

Great state. Great opportunity.
Genetics 101

- **Cells** *(library)*
 - Body composed of millions
- **Chromosomes** *(bookshelves)*
 - Located within nucleus of cells
 - Come in 23 pairs
 - Inherit 23 from each parent
 - Made up of genes
- **Mitochondria** *(batteries)*
- **Genes** *(books)*
 - ~24000 genes
 - Consist of DNA
Classification of genetic disorders

- **Chromosomal**
 - Numerical (monosomy/trisomy), mosaicism
 - Structural (deletions/duplications/translocations)

- **Single gene**
 - Autosomal dominant
 - Autosomal recessive
 - X-linked

- **Mitochondrial**

- **Imprinting/epigenetic**

- **Multifactorial** (e.g. genetic variant + environment)

- **Acquired somatic** (e.g. cancer)

- **[Non-genetic]** (e.g. teratogen, infective, mechanical in utero)
Chromosomes disorders

Numerical

- More or fewer chromosomes than 46
- One extra = Trisomy
- One fewer = Monosomy

E.g.

47,XY+21 = Down syndrome
45,X = Turner syndrome
Chromosomes disorders

Structural

- Translocations
 - **Balanced** = no net loss of genetic material
 - **Unbalanced** = net loss or gain of genetic material
 → miscarriage, stillbirth, liveborn with congenital anomalies

Reciprocal translocation (1 in 500)

Robertsonian translocation (1 in 1000)
Chromosomes disorders

Structural
- Deletions
- Duplications
- Ring
- Inversions
Single gene disorders

Dominant disorder
Heterozygotes with **one copy** of the mutated gene are affected

Recessive disorder
Homozygotes / compound heterozygotes with **two copies** of the mutated gene are affected

X-linked recessive disorder
Males with **one copy** of the mutated gene on X-chromosome are affected
Females with **one copy** of the mutated gene on X-chromosome are ‘carriers’
Autosomal dominant inheritance

- Multiple generations affected – no skipped generations
- Transmitted by affected males and females
- Males and females can be affected
- For affected parent the offspring risk = 1 in 2 (50%)
Penetrance & Expressivity

Autosomal dominant disorders

Expression:
- ‘The degree to which a disorder is expressed in an individual’
- This can differ within and between families

Penetrance:
- ‘The proportion of individuals with the gene mutation who are clinically affected’ (e.g. reduced, 60% etc)
Autosomal recessive inheritance

- Usually individuals affected in a single generation
- Both parents are carriers and unaffected
- Males and females can be affected
- For two carrier parents the offspring risk = 1 in 4 (25%)
X-linked recessive inheritance

- Males affected mostly
- Female carriers usually unaffected but can be affected
- Affected males cannot transmit disorder to their sons
Genetics in Primary Care
Typical questions patients ask:

- “My aunt and grandmother died of breast cancer. My Mum’s just been told she’s got cancer. Am I going to get it too?”

- My sister has just been told her son has cystic fibrosis. I’m pregnant. Could my baby get cystic fibrosis too?”

- “My uncle had Huntington’s disease. Should I have the test? I’m just in the process of buying a new house.”

- “My 23 yrs old son died suddenly recently of a cardiomyopathy. I’m finding it hard to cope, and I’m worried about my other children.”

- “Lots of people on my Dad’s side of the family have polycystic kidney disease and had dialysis or transplants. What is my risk?”
Genetics and primary care

- **General Practice**
 - Identifying patients and families with, or at risk of, genetic conditions
 - Knowing indications for referral to specialist

- **Hospital**
 - Making diagnosis
 - Ordering and understanding genetic test results
 - Recommending treatments

- **General Practice**
 - Treating/ managing condition
 - Implications for patient with condition and for other family members
Genetics and primary care

- 3 main themes

Identifying patients

Communicating genetic information

Clinical management
How do I recognise patients with or at risk of genetic conditions?

- From a known genetic diagnosis or by recognising signs and symptoms of common genetic conditions
- From interpreting a family history
- From the results of screening programmes
What does clinical management for people with genetic conditions involve?

Accessing information
- Information about genetic conditions
- Referral and management guidelines

Management in primary care
- Reassurance, preventive measures, surveillance, treatment, reproductive options, genetic testing
- Patient-centred, co-ordinated care and support

Referring to specialist services
- How are services for patients with or at risk of genetic conditions organised?
- Where is your local genetics service located?
- How do you refer patients to specialist services for genetic conditions:
 - to your Regional Genetics Centre for investigation, information or diagnosis?
 - to other specialist services for investigation, diagnosis or treatment?
What does communicating genetic information involve?

- Communicating genetic information in an understandable way
- Being non-directive and supporting informed decision making
- Understanding consent and confidentiality issues
- Appreciating the emotional, ethical, legal and social impact of genetic information for a patient and their family
Build up the tree from the "bottom" starting with affected child and siblings. Record names, dates of birth.

Choose one parent. Ask about sibs and their children, then parents.
Add information on the other side of the family

I:1 Arthur Smith
18/3/1918

I:2 Elizabeth
27/6/1918

II:1 Peter Smith
1/10/1950

I:3 Norman Pugh

I:4 Elsie

II:3 Howard Pugh

II:4 Judy

III:1 Kirsty
16/3/1980

III:2 Stephen
20/3/1982

III:3 Richard
5/8/1984

III:4 Duncan

III:5 Mark

Put a sloping line through the symbol (from the bottom left hand corner) if the person has died

Colour in the symbol if the person is affected

Record names, dates of birth and maiden names

Ask for miscarriages, stillbirths or deaths in each partnership
“May I ask: have you had any children with other partners?”
Other pedigree symbols

- Affected male
- Unaffected female who has died
- Affected female
- Double line joins union of consanguineous couple
- Stillborn baby of unknown sex
- Spontaneous abortion
- Therapeutic abortion
- Twins: identical; non-identical
- Unaffected person whose sex is unknown
Why interpretation is important?

- Help to make/refine a diagnosis
- Reveal patterns of inheritance
- Assess likelihood of genetic disease in relatives
- Affect testing, treatment, and management strategies
- Highlight need for specialist referral
- Correct any family misconceptions
Clinical Genetics Services
Genetics Service Model

- Primary Care Services
 GPs and other primary providers diagnose, screen and refer patients i.e. haemochromatosis, neurofibromatosis, cancers, type 2 diabetes, fragile x and others.

- Mainstream Specialist Services
 Utilise genetic testing to diagnose and treat patients e.g. neurology, paediatrics, cancer.

- Joint Services
 Clinical geneticist and mainstream specialist diagnose, review and manage patients with organ specific disorders, e.g. renal, cardiac, cancer.

- Specialist
 Diagnose and manage patients with multisystem and rare disease

- Patients

Genetic Health Queensland
Great state. Great opportunity.
Clinical genetics services

- Public services are available in every state
- Departments are located in one major hospital
 - provide outreach clinics in various hospitals/HHS
- Consist of clinical geneticists and genetic counsellors
Clinical Genomics / Genomic Medicine

Definition:

- "an emerging medical discipline that involves using genomic information about an individual as part of their clinical care (e.g. for diagnostic or therapeutic decision-making) and the health outcomes and policy implications of that clinical use”.
- NOT research genomics

Genetic counselling:

- An education process that seeks to assist affected (and/or ‘at risk’) individuals to understand the:
 - nature of the genetic disorder and its management/surveillance
 - genetic basis, inheritance pattern, and risk to family members
 - options for family planning
 - role/option/availability/outcome of genetic testing
Reasons for referral

- **Adult:**
 - Known diagnosis (information) or diagnostic
 - Family history (including cancer)
 - Genetic test results
 - Predictive /carrier testing
 - Reproductive planning

- **Child:**
 - Known diagnosis (information) or diagnostic
 - Birth anomalies, dysmorphic features
 - Developmental delay, learning difficulties
 - Genetic test results

- **Pregnancy:**
 - Known genetic disorder (prenatal testing)
 - Abnormality detected on screening/invasive testing
 - Previous fetal loss/abnormalities
Referral process

Referral form

- Discuss the option of a referral with the patient.
 - Ensure that the patient consents to the referral and is aware of how the service is set up.
- Send in a completed referral with all relevant information
- If you are unsure if referral is appropriate, or if urgent, then telephone your regional genetics centre for further advice.
Clinical Prioritisation Criteria

Completed and live from January 2019

Clinical Prioritisation Criteria (CPC) are clinical decision support tools that will help ensure patients referred for public specialist outpatient services in Queensland are assessed in order of clinical urgency.

CPC will be used by both referring practitioners when referring into the Queensland public hospital system and Queensland public specialist outpatient services when determining how quickly the patient should be seen (urgency category).

Developed by clinicians

A Clinical Advisory Group (CAG) was established for each medical specialty and a medical specialist appointed as the Clinical Lead. CPC are developed by a multi-disciplinary team of clinicians to ensure that the criteria are clinically relevant. Clinical Excellence Division would like to acknowledge the valuable contribution of Queensland Health staff and primary care clinicians during the development of Clinical Prioritisation Criteria. We would also like to recognise the utilisation of reference material from state, interstate and international sources throughout the development of CPC.

Search a condition

Please note this is not an exhaustive list of all conditions considered for outpatient services

- All conditions
- Adult only
- Paediatric only

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Clinical Prioritisation Criteria

Genetic General

Conditions

- Cardiac genetics (A/P-AFF)
- Endocrine genetics (A/P-AFF)
- Gastroenterology / hepatology / genetics (A/P-AFF)
- Haematology genetics - excluding cancers (A/P-AFF)
- Metabolic genetics (A/P-AFF)
- Neurology genetics (A/P-AFF)
- Ophthalmic genetics (A/P-AFF)
- Other adult genetic conditions (AD)
- Paediatric genetics
- Renal genetics (A/P-AFF)
- Reproductive genetics (A/RG)
- Respiratory genetics (A/P-AFF)
- Untested and UNAFFECTED blood relative of a person with an identified gene mutation/chromosomal anomaly (A/P-Un)

Emergency referrals

- No referrals to emergency relating to clinical genetics

GP Genetics referral advice line

For advice regarding referrals and clinical questions regarding patients that may require referral to Genetics Queensland please phone (07) 36461586

Send referral

Hotline: 1300 364 938
Fax: 1300 364 952
Electronic referral system

Mail: Metro North Central Patient Intake
Aspley Community Centre
776 Zillmere Road
ASPLEY QLD 4034

Health pathways

Access to Health Pathways is free for clinicians in Metro North Brisbane.

For login details email healthpathways@brisbane.northsideqld.health.qld.gov.au

Login to Brisbane North Health Pathways
brisbannorth.healthpathwayscommunity.org

Genetic Health Queensland
Great state. Great opportunity.
Clinical Genetics Patient Pathway

Referrals triaged:
- Cancer vs. General
- Face to face clinic
- Telehealth clinic
- Conjoint MDT clinic
e.g. cardiac, renal

Prior to clinic:
- Pedigree taking
- Clinical information (letters, investigations)
- Relatives’ info/consent
- Literature review

Post clinic:
- Case discussion
- Expert opinions
- Dx formulation
- Genetic test results (interpretation)

Clinic Appointment:
- History review
- Family history review
- Clinical examination
- Diagnosis/differential
 - Management issues
 - Genetics/inheritance
 - Risk to relatives
- Genetic testing
 - Indication, type
 - Outcomes, caveats
- Reproductive options
- Psychosocial support

Further appointment:
- Result disclosure
- Same points as blue
Genetic diagnosis

Benefits:

- End to the diagnostic odyssey (doctor and patient)
- Limitation of other invasive and costly investigations
- Potential targeted medical therapies
- Initiation of medical surveillance pathway
- Prognostication information
- Psychosocial benefits to patient/families
- Clarification/early identification of at-risk relatives
- Reproductive options
Current - Therapeutics

Molecular Therapies for Tuberous Sclerosis and Neurofibromatosis
David Neal Franz • Brian D. Weiss

Tolvaptan in Patients with Autosomal Dominant Polycystic Kidney Disease
Vicente E. Torres, M.D., Ph.D., Arlene B. Chapman, M.D.,
Olivier Devuyst, M.D., Ph.D., Ron T. Gansevoort, M.D., Ph.D.,
Jared J. Grantham, M.D., Eiji Higashihara, M.D., Ph.D., Ronald D. Perrone, M.D.,
Holly B. Krasa, M.S., John Ouyang, Ph.D., and Frank S. Czerwiec, M.D., Ph.D.,
for the TEMPO 3:4 Trial Investigators*

Usefulness of Losartan on the Size of the Ascending Aorta in an
Unselected Cohort of Children, Adolescents, and Young Adults
With Marfan Syndrome
Christiane Pees, MDa,b, Franco Laccone, MDb, Marion Haglb, Veerle DeBrauwer, MDc,
Elisabeth Moser, MDd, and Ina Michel-Behnke, PhDa
Australian Government listed **nusinersen**:
- on PBS
- from 1 June 2018
- for treatment of SMA types 1, 2, and 3a
DRUG TRIALS

In December 2017, Huntington’s disease made global headlines for a great reason: scientists had made a breakthrough in the hunt for a treatment. The drug has been developed by researchers, and it is hoped the drug will be able to lower the amount of huntingtin protein in a person with HD and that this may possibly slow down, stop or even reverse some of the symptoms of HD. DRUG X was tested for safety on 40 volunteers over a 27-month period. The trial results were published in a media release on December 11, 2017, with two important announcements:

1. The drug proved entirely safe for humans, allowing researchers to plan for the next phase of testing – outcomes.
2. Early indications are that the drug is effective in reducing the amount of huntingtin protein.

What researchers do not yet know is whether or not this reduction will have any effect on people’s symptoms. There is hope that by ‘silencing’ the protein, symptoms may be reduced, stopped or even reversed, but this is not yet known. The next phase of the trial, hopefully starting late in 2018, will investigate this.

Many people are hoping to get involved with the trial, but at this point there is no indication that the trial will be available in Australia. The best course of action for those located in Australia is to get involved with Enroll-HD, as any trial information or opportunities will come through there. To read the news articles about this new drug, visit our page of news about the drug trial.
Genetic Diagnosis

- Imaging
- Family Hx
- Other Ix
 - blood, urine, muscle, skin
- Clinical features
- Hx
- Genetic test
- TIME

Genetic Health Queensland
Great state. Great opportunity.
Genetic testing (diagnostic)
Genetic testing - indications

<table>
<thead>
<tr>
<th>Indication</th>
<th>Person</th>
<th>Purpose</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostic</td>
<td>Symptomatic</td>
<td>Diagnose a specific disease</td>
<td>FBN1 gene testing in person with Marfan syndrome</td>
</tr>
<tr>
<td>Carriers</td>
<td>Asymptomatic with known high risk for being a carrier (AR, XL)</td>
<td>Determine genetic carrier status for reproductive risks</td>
<td>Cystic fibrosis carrier testing</td>
</tr>
<tr>
<td>Predictive</td>
<td>Asymptomatic with a known high risk of genetic condition (AD, AR, XL)</td>
<td>Determine genetic status/risk before onset of symptoms</td>
<td>Huntington disease gene testing in adult offspring of affected person</td>
</tr>
<tr>
<td>Prenatal</td>
<td>Pregnant woman</td>
<td>Diagnose/determine risk of a specific disease before birth</td>
<td>Prenatal test for Duchenne muscular dystrophy</td>
</tr>
<tr>
<td>Pharmacogenetic</td>
<td>Patient with disease using a medication</td>
<td>Identify variants that impact drug metabolism and dosing</td>
<td>CYP2C9 and VKORC1 variants for warfarin use</td>
</tr>
<tr>
<td>Direct-to-consumer</td>
<td>Healthy person or clinical disease</td>
<td>Determine relative (not absolute) risk of a multifactorial condition</td>
<td>Multiple variants that confer a risk to diabetes</td>
</tr>
</tbody>
</table>
Genetic testing - type/method

Test type depends on:

- Suspicion of aetiology/mechanism
 - Chromosomal, single gene, mitochondrial, imprinting
- Limitations of test
 - Resolution, interpretation, Incidental findings
- Cost of test
 - Medicate rebate (Arrays, FRAX), Public (medical dept), Private
- Availability
 - State, Interstate, International
- Time
 - 4 weeks, 3 months, 6+ months
Genetic testing - Chromosomes
Genetic testing - Chromosomes

- Karyotype
Genetic testing - Chromosomes

- FISH
Genetic testing - Chromosomes

- **Microarray**
 - High resolution chromosome analysis
 - Chip with probes representing genomic regions
 - Comparative to ‘normal’
Genetic testing - Chromosomes

- **Microarray (interpretation)**
 - Bioinformatics tools
 - Databases
 - PubMed
 - Gene content of region
 - Inheritance

 - Pathogenic vs.
 - Benign vs.
 - VOUS (variant of unknown significance)
Chromosome testing

- Microarray report

Anomaly detected – del/dup and size

Nomenclature & genomic coordinates

Laboratory interpretation – gene content

Literature review & clinical features

MOLECULAR KARYOTYPE REPORT

Summary: ABNORMAL REPORT. Variant of uncertain clinical significance associated with incomplete penetrance and/or variable expressivity DETECTED. Parental samples requested.

Clinical information: Developmental delay, odd posturing, cry sound every 15 seconds.

Result: A 973 Kb deletion was detected at 15q11.2

Molecular Karyotype (ISCN 2013): arr[hg19] 15q11.2(22,299,434-23,272,733)x1

Interpretation: Array results show a male molecular karyotype. A heterozygous interstitial deletion of approximately 973 Kb was detected at chromosome 15q11.2, extending from base 22,299,434 to base 23,272,733. The deleted region contains at least 26 known genes between RefSeq genes LOC101927079 and GOLGA8IP, of which one is an OMIM listed disease causing gene [NIPA1; OMIM 608145].

This copy number loss is in a known susceptibility region for developmental delay [Burnside et al., Hum Genet. 2011; 130(4):517-28]. The breakpoints and gene content of the copy number loss seen in this patient corresponds to a “BP1-BP2 deletion” (between breakpoints 1 and 2). Please note that this deletion does not encompass the Prader-Willi/Angelman syndrome critical region, which is between BP2 and BP3.

Common clinical features noted in patients with the BP1-BP2 deletion include developmental delay (including motor and speech delays), congenital heart disease, intellectual disability, autistic features, seizures and behavioural issues [PMID: 25596525]. However, there is phenotypic variability between patients, and the deletion can be inherited from a normal parent. Similar deletions have also been reported in individuals in the normal population.

Conclusion: The clinical significance of this copy number change is currently uncertain.
Genetic testing - Chromosomes

Chromosome Microarray (CMA) Testing Guide – Children and Adults

1. Patient to undergo CMA testing, a genetic test which checks for DNA copy number variations, not including fragile X
2. Discussion of test process, limitations and counselling about variety of possible outcomes listed below
3. Blood sample collected (5-10ml in EDTA - Confirm sample requirements with local laboratory)
4. Possible laboratory findings include the following:

<table>
<thead>
<tr>
<th>No abnormality found</th>
<th>Diagnostic of known, expected condition</th>
<th>Variant of unknown significance found</th>
<th>Variant with unexpected implications found</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Normal result or known, benign change detected</td>
<td>• Known copy number variant (CNV) identified</td>
<td>• Copy number variant of unknown significance (VOUS) identified</td>
<td>• Copy number variant of unexpected significance identified</td>
</tr>
<tr>
<td>• Consider referral to a genetics clinic if concerns remain about a genetic diagnosis or recurrence in another pregnancy</td>
<td>• Consider referral to genetics clinic for genetic counselling</td>
<td>• Consider referral to genetics clinic for interpretation of report and diagnostic review</td>
<td>• Consider referral to genetics clinic for interpretation of report and genetic counselling</td>
</tr>
<tr>
<td>• No further testing required at this stage</td>
<td>• No further testing required at this stage</td>
<td>• Further testing such as parental studies may be useful</td>
<td>• Further testing such as parental studies may be useful</td>
</tr>
</tbody>
</table>
Chromosomes anomalies
Chromosome → Gene → Nucleotide
Single gene mutations

- **Normal**: ATG GCA ATT CGTT TTA CCT ATA GGG...
 - Amino acids: Met, Ala, Ile, Arg, Phe, Leu, Pro, Ile, Gly

- **Silent mutation**: ATG GCA ATT CGTT TTG CCT ATA GGG...
 - Amino acids: Met, Ala, Ile, Arg, Phe, Leu, Pro, Ile, Gly

- **Missense mutation**: ATG GCA ATT CGTT TTT TCA CCT ATA GGG...
 - Amino acids: Met, Ala, Ile, Arg, Phe, Ser, Pro, Ile, Gly

- **Nonsense mutation**: ATG GCA ATT CGTT TTT TGA CCT ATA GGG...
 - Amino acids: Met, Ala, Ile, Arg, Phe, Stop

- **Frameshift mutation (1bp deletion)**: ATG GCA ATT CGTT TTT TAC CCT ATA GGG...
 - Amino acids: Met, Ala, Ile, Arg, Phe, Tyr, Leu, Stop
Genetic testing - Single gene

- Sanger sequencing (1970’s)
 - Gold standard
 - Basis of Human Genome Project
 - (cost $3billion over 13 years)
 - One gene at a time
 - Low error rate
 - Evolved from ‘gel’ → ‘capillary’ electrophoresis with fluorescent tags
Genetic testing - gene

Interpretation/report
Genetic testing - Next generation sequencing (NGS)

- **NGS pipeline**
 - Cost effective
 - automated, cheaper, faster
 - High throughput
 - more samples/genes in one experiment
Genetic testing - NGS

Library prep/sequencing

- Patient DNA fragmented into smaller sizes
- Add ‘baits/fragments’ of target sequence
 Target = panel of genes OR exome OR genome
- Hybridized patient DNA/baits is captured (e.g. with beads)
- Sequence captured fragments using a platform/sequencing method/machine
- +++ platforms, capture/sequencing methods, machines available from different companies
Genetic testing - NGS

Target
- Panel of genes
- Clinical exome (~5000 known disease genes)
- Whole exome (All ~24000 genes)
- Genome

Analysis
- Panel of genes
- Clinical exome (~5000 known disease genes)
- Whole exome (All ~24000 genes)
- Genome

Whole Genome

Exome = 1%

Targeted = 10 to 500 epilepsy genes

Genetic Health Queensland

Great state. Great opportunity.
Genetic testing - NGS

Variant filtering and interpretation

Genome vs. genome analysis

- **Genotyping** vs. **Interpretation**
 - 95% Genotyping
 - 95% Interpretation

Cost per genome

- 2012: 10 Mio.
- 2013: 10 Mio.
- 2014: 1 Mio.
- 2016: 1 Mio.

Number of genomes sequenced

- 2012: 1
- 2013: 1
- 2014: 1
- 2015: 1
- 2016: 1
- 2017: 1

How

- **Mapping/pairing variant calling**
- **Annotation using informatic tools**
- **General databases**
- **In house database**
- **In silico pathogenicity prediction**
- **Scientific literature review**
- **LSDBs**
- **Mendelian coherence**
- **Gene or variant known to cause disease**
- **Function (missense, truncating, splicing..)**
- **Conservation**
- **Normal gene variability**
- **Protein functional domains**
- **Genotype-phenotype coherence**
- **Experimentally proven effect**

Prioritization (likelihood of pathogenicity)

- **Yes**
- **Likely**
- **Unknown**
- **Unlikely**
- **No**

Clinical interpretation (likelihood of causality)

- **10–20 rare, functional variants in relevant disease genes**
- **Filtering by phenotype**
- **1–4 variants in relevant inheritance (trio analysis)**
- **Filtering by inheritance**
- **0–2 candidate diagnostic variants**
- **Clinical assessment**

Genetic Health Queensland

Great state. Great opportunity.
Genetic testing - NGS - caveats

Understand the types of mutations with each gene

Not detected by:
- Sanger sequencing
- MLPA
- Panels
- Exomes
- Genomes

Trinucleotide repeat diseases

<table>
<thead>
<tr>
<th>Fragile-X Syndrome</th>
<th>Huntington's disease and many SCAs</th>
<th>Friedreich ataxia</th>
<th>Myotonic dystrophy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGG >200</td>
<td>CAG >36</td>
<td>GAA >70</td>
<td>CTG >100</td>
</tr>
<tr>
<td>60-200</td>
<td>≤35</td>
<td>≤30</td>
<td>>50-150</td>
</tr>
<tr>
<td>≤55</td>
<td></td>
<td></td>
<td>≤35</td>
</tr>
</tbody>
</table>

UTR Exon Intron Exon UTR

- Full mutation
- Premutation range (may expand to a full mutation in the next generation)
- Normal alleles

UTR = untranslated region
SCA = spinocerebellar ataxia

Genetic Health Queensland
Great state. Great opportunity.
Gene(tic) testing

<table>
<thead>
<tr>
<th></th>
<th>Single Gene</th>
<th>Panel</th>
<th>Exome</th>
<th>Genome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Targeted</td>
<td>+++</td>
<td>++</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>No. variants to interpret</td>
<td>minimal</td>
<td>few</td>
<td>many</td>
<td>numerous</td>
</tr>
<tr>
<td>Risk of incidental findings</td>
<td>unlikely</td>
<td>very low</td>
<td>possible</td>
<td>possible</td>
</tr>
<tr>
<td>Applicable to genetically heterogeneous diseases</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Complex lab process</td>
<td>-</td>
<td>+</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>Turnaround time</td>
<td>+</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Data can be reinterrogated</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>
NGS testing

- **report**

TEST PERFORMED

Intellectual Disability

(499 Gene Panel; including 3 Added Genes - KAT6A, KAT6B, KMT2A; gene sequencing with deletion and duplication analysis)

RESULTS:

A heterozygous pathogenic variant consistent with a molecular diagnosis of a FOXP2 related condition was identified.

Additionally, 7 variants of potential clinical relevance are identified.

Clinically Significant Variants

<table>
<thead>
<tr>
<th>Gene Info</th>
<th>Variant Info</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOXP2</td>
<td>c.1191dup</td>
<td>Pathogenic</td>
</tr>
<tr>
<td>NM_014491.3</td>
<td>p.Glu398Argfs*31 (maternally inherited)</td>
<td></td>
</tr>
</tbody>
</table>

Additional Variants of Potential Clinical Relevance

<table>
<thead>
<tr>
<th>Gene Info</th>
<th>Variant Info</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPOX</td>
<td>c.82C>T</td>
<td>Heterozygous</td>
</tr>
<tr>
<td>NM_000309.4</td>
<td>p.Pro28Ser</td>
<td>Unknown Significance</td>
</tr>
<tr>
<td>COG7</td>
<td>c.1766G>A</td>
<td>Heterozygous</td>
</tr>
<tr>
<td>NM_153603.3</td>
<td>p.Arg569His</td>
<td>Unknown Significance</td>
</tr>
<tr>
<td>POMT1</td>
<td>c.1565G>A</td>
<td>Heterozygous</td>
</tr>
<tr>
<td>NM_007171.3</td>
<td>p.Arg522Lys</td>
<td>Unknown Significance</td>
</tr>
<tr>
<td>AHI1</td>
<td>c.2906C>G</td>
<td>Heterozygous</td>
</tr>
<tr>
<td>NM_017651.4</td>
<td>p.Thr969Ser</td>
<td>Unknown Significance</td>
</tr>
<tr>
<td>IGF1R</td>
<td>c.1940G>A</td>
<td>Heterozygous</td>
</tr>
<tr>
<td>NM_000875.4</td>
<td>p.Arg647His</td>
<td>Unknown Significance</td>
</tr>
<tr>
<td>PCNT</td>
<td>c.8431G>T</td>
<td>Heterozygous</td>
</tr>
<tr>
<td>NM_006031.5</td>
<td>p.Val2811Leu</td>
<td>Unknown Significance</td>
</tr>
<tr>
<td>SMARCA4</td>
<td>c.829C>T</td>
<td>Heterozygous</td>
</tr>
<tr>
<td>NM_001128849.1</td>
<td>p.Pro277Ser</td>
<td>Unknown Significance</td>
</tr>
</tbody>
</table>
A heterozygous variant in the FOXP2 gene, NM_014491.3:c.1191dup (p.Glu398Argfs*31), was identified in the submitted specimen. Autosomal dominant mutations in FOXP2 have been associated with speech-language disorder-1 (SPCH1), which is also known as speech and language disorder with orofacial dyspraxia (PubMed: 20301615; OMIM: 602081). The disorder is characterized by abnormal development of several brain areas critical for both orofacial movements and sequential articulation, resulting in marked disruption of speech and expressive language. Limited studies have suggested that variants in FOXP2 gene may be associated with autism spectrum disorders, but more recent data indicate that this association is unlikely (PubMed: 10889044, 11894222). This frameshift variant, p.Glu398Argfs*31, is the result of the insertion of one base pair which leads to an out of frame transcript, and the introduction of a premature stop codon. This variant is predicted to result in loss of function of the protein product of the FOXP2 gene either as the result of protein truncation, or of nonsense mediated mRNA decay. While this truncating variant has not, to our knowledge, been reported in the literature, truncating variants downstream of this position have been reported to be pathogenic (PubMed: 23918746, ClinVar:419394). This variant has not been reported in the Broad dataset (individuals without severe childhood onset disease). This frameshift is predicted to result in a premature truncation of the protein product encoded by this gene. The laboratory considers this variant to be pathogenic.
Genetic testing costs

<table>
<thead>
<tr>
<th>Test</th>
<th>Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karyotype</td>
<td>400</td>
</tr>
<tr>
<td>FISH</td>
<td>150</td>
</tr>
<tr>
<td>Microarray</td>
<td>600</td>
</tr>
<tr>
<td>Cystic fibrosis (50 common mutations)</td>
<td>180</td>
</tr>
<tr>
<td>AS/PWS</td>
<td>400</td>
</tr>
<tr>
<td>Myotonic dystrophy</td>
<td>500</td>
</tr>
<tr>
<td>Gene panel test</td>
<td>1500</td>
</tr>
<tr>
<td>Whole genome</td>
<td>3000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test</th>
<th>Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FBC</td>
<td>15</td>
</tr>
<tr>
<td>Urine metabolic</td>
<td>65</td>
</tr>
<tr>
<td>Lactate</td>
<td>15</td>
</tr>
</tbody>
</table>
Genetic testing - consent

Consent with (diagnostic) clinical genomic/genetic testing: (ACMG recommendations)

- A clear distinction should be made between clinical and research testing
- Counselling should:
 - include written documentation of consent from the patient
 - be performed by a medical geneticist/affiliated genetic counsellor (if genomic)
- Pretest counselling should include a discussion of:
 - potential benefits and risks of test and alternatives to such testing
 - nature of and limitations of such testing
 - type of analysis performed
 - expected outcomes of testing (+ve, -ve, VOUS)
 - likelihood and type of incidental results that may be generated
 - potential implications for family members
Challenges: DTC testing

- **NOT** available/funded in public system (GHQ)
- GHQ do not see patients who are considering or have had DTC

- Caution:
 - Do not test for all genetic disorders
 - Mostly tests for ‘variations’ not mutations in genes
 - Confers a ‘relative risk’ of common multifactorial diseases
 - Not useful for Mendelian rare genetic diseases
Reproductive Genetics
Preconception

Key Components of Preconception Care

1. Reproductive life plan
2. Past reproductive history
3. Medical assessment
4. Medication use
5. Infections & immunizations
6. Genetic risks
7. Healthy weight & nutrition
8. Psychological & behavioral risks
9. Healthy environment
10. Physical assessment

Genetic Health Queensland

Great state. Great opportunity.
Carrier Screening

- Ideally screen before pregnancy
- Typical for AR and XL diseases
 - Haemoglobinopathies
 - Cystic fibrosis
 - Spinal muscular atrophy
 - Fragile X

- Particularly for those with a +ve family history
 - Available/funded in public system (via GHQ)
 - Requires prior identification of the specific familial gene mutation
Carrier Screening

- Population screening for common conditions for those with NO family history

- Available/funded in public system (GHQ) when:
 - Condition is inherited in autosomal recessive manner
 AND
 - Partner of individual is proven carrier of condition
 (or at risk based on their family history)
 AND
 - Population frequency of being a carrier is >1/50
 - e.g. cystic fibrosis, congenital adrenal hyperplasia,
 - e.g. spinal muscular atrophy, alpha/beta thalassaemia
Carrier Screening

- Population screening for common conditions for those with NO family history

- **NOT** Available/funded in public system (GHQ) when:
 - Individuals have no family history of condition (AR or XL)
 - Population frequency of being a carrier is <1/50
 - e.g. autosomal recessive polycystic kidney disease (~1/70)
 - e.g. galactosaemia (~1/110)
 - e.g. Pompe disease (~1/190)

 REGARDLESS OF
- Confirmation that partner of individual is proven carrier of disease
Carrier Screening

- Population screening for common conditions for those with **NO** family history
- **NOT** Available/funded in public system (GHQ)

- Many self-funded ‘carrier’ genetic tests in the market
- Caution:
 - Do not test for all AR/XL disorders
 - Sometimes only test for common mutations in the genes listed
 - Negative result does not completely exclude being a carrier (residual risk may still present)
Combined first trimester screening

- Primarily designed for fetal aneuploidy
 - Initially T21
 - Data now routinely available for T18 & T13
 - Note that screening is NOT diagnostic

- Most screening locally uses combination of:
 - Maternal age (↑ age ∝ ↑ risk aneuploidy)
 - Nuchal translucency (↑ NT ∝ ↑ risk aneuploidy)
 - B-hCG (↑ T21, ↓ T18, T13)
 - PAPP-A (↓ T21, T18, T13)
 - (fetal nasal bone)
Combined first trimester screening

- Risk is expressed as being ‘increased’ or ‘decreased’
- Less than 1 in 300 is traditionally considered ‘increased’
- Women at increased risk can be offered invasive diagnostic testing (CVS or amniocentesis)

<table>
<thead>
<tr>
<th>Method of screening</th>
<th>DR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternal age (MA)</td>
<td>30</td>
</tr>
<tr>
<td>MA and maternal serum biochemistry at 15-18 weeks</td>
<td>50-70</td>
</tr>
<tr>
<td>MA and fetal nuchal translucency (NT) at 11-13<sup>th</sup> wks</td>
<td>70-80</td>
</tr>
<tr>
<td>MA and fetal NT and maternal serum free β-hCG and PAPP-A at 11-13<sup>th</sup> wks</td>
<td>85-90</td>
</tr>
<tr>
<td>MA and fetal NT and fetal nasal bone (NB) at 11-13<sup>th</sup> wks</td>
<td>90</td>
</tr>
<tr>
<td>MA and fetal NT and NB and maternal serum free β-hCG and PAPP-A at 11-13<sup>th</sup> wks</td>
<td>95</td>
</tr>
</tbody>
</table>
Non-Invasive Prenatal Testing/Screening (NIPT/S)

- Screening NOT diagnostic test
- From 10 wks gestation
- Fragments of fetal DNA cross into maternal blood
- Maternal blood test can measure fetal DNA
- Screening test for some chromosome anomalies
 - Trisomy 13, Trisomy 18, Trisomy 21
 - Sex chromosomes - Turner syndrome
- Potentially avoids need for invasive testing
- Useful in gender identification for sex-linked disorders
 - Avoids invasive testing if fetus is female
- Not yet available to test single gene disorders (e.g. CF)
Prenatal testing

- Invasive test to sample fetal cells
- Diagnostic test for couples with:
 - High risk pregnancies from NIPT and/or CFTS
 - Chromosomal analysis
- Predictive test for fetus/baby with:
 - Family history of genetic disease
 - Requires prior identification of the specific familial gene mutation or chromosome anomaly
Prenatal testing

- Available in public and private systems
 - Chorionic villus sampling (CVS)
 - from 11 wks gestation
 - sample of placenta
 - miscarriage risk 1-2%
 - Amniocentesis
 - from 16 wks gestation
 - sample of amniotic fluid
 - miscarriage risk 0.5-1%
Pre-implantation Genetic Diagnosis (PGD)

- Requires prior identification of the specific familial gene mutation or chromosome anomaly
- Private (self funded)
- Specialised PGD centres (not just any IVF specialist)
 - IVF process (fertile/non fertile couples)
 - Embryos tested for specific familial gene mutation
 - Unaffected embryos implanted
- Complex issues
 - Financial, time, success rates of IVF
 - Emotional, psychological
 - Prior lab work up
 - needs to know their technology will be able to find the mutation
Options for family planning

- Be fully informed about risk to children
- Route taken depends on person/couple’s own views
- **A) Do nothing (natural course)**
 - Parents with low risk to children (i.e. *de novo* cases)
 - Those who would not pursue pregnancy testing options
 - Where a specific familial gene mutation is unidentified/unknown
- **B) Sperm or egg donation**
 - Those who would not pursue pregnancy testing options
 - Where a specific familial gene mutation is unidentified/unknown
- **C) Detailed anomaly scans (USS/MRI) via maternal-fetal medicine**
 - Those who would not pursue pregnancy testing options
 - Where a specific familial gene mutation is unidentified/unknown
 - Where structural anomalies are part of condition and detectable antenatally
- **D) Prenatal (invasive) testing**
- **E) Pre-implantation genetic diagnosis (PGD)**
Pregnancy management

- Affected females (with a genetic disease) should discuss family planning with their medical team.
- If high risk, should be managed by obstetric medicine physician in tertiary centre.

Issues to clarify:
- Effects of their medication on fertility
- Effects of their medication on baby
 - Teratogenic effects e.g. anti-epilepsy meds
- Risk/effect of bearing a pregnancy on disease
 - based on severity of their disease
 - e.g. kidneys, heart, lungs
Ethical, legal, & social issues
Predictive testing

- Predictive = at-risk pre-symptomatic child/adult

- Role of clinical genetics service

- Testing and counselling offered in public system (GHQ)

- Requires prior identification of familial genetic mutation

- e.g. conditions
 - Marfan syndrome, cardiomyopathy, arrhythmia
 - Huntington disease, AD polycystic kidney disease
 - Spinocerebellar ataxia, genetic early onset dementia
Predictive testing - issues

- Needs genetic counselling to discuss pros/cons of testing

Pros
- Management planning
 e.g. treatment, screening
- Anxiety of not knowing
- Reproductive planning
- Career/lifestyle planning

Cons
- No treatment available
- Anxiety of symptom development
- Genetic guilt
- Diagnostic label/stigma
- Financial/employment/insurance discrimination
- Effect on family dynamics/relationships
- Altered parental rearing
- Loss of autonomy for child
Genetic testing - consent

Consent with (predictive) clinical genetic testing:

- Counselling should:
 - include written documentation of consent from the patient
 - only be performed by a medical geneticist/affiliated genetic counsellor

- Pretest counselling should include a discussion of:
 - potential alternatives to such testing
 - expected outcomes of testing (+ve or -ve)
 - potential implications for family members
 - potential advantages of the test
 - potential disadvantages/risks of test
HD predictive testing pathway

- **Stage 1 (Genetic counsellor)**
 - Disease information, genetics, risk,
 - Test characteristics
 - Predictive testing pros/cons
 - Clarify professional and family support systems

- **Stage 2 (Psychologist)**
 - Identify any pre-existing risk factor
 - Evaluate current mental state
 - Discuss/evaluate potential impact of result
HD predictive testing pathway

- **Stage 3 (Clinical Geneticist)**
 - Clinical review and assessment
 - Review motivation for testing and any issues
 - Pathology request, consent for testing
- **Stage 4 (Clinical Geneticist)**
 - Results given face to face
- **Optional stage 5 (Psychology/Genetic Cllr)**
 - Discuss impact/issues post results
Parliamentary Committee & life insurance industry

- Recommendations in relation to genetic information:
 - **9.1** - The Financial Services Council, in consultation with the Australian Genetic Non-Discrimination Working Group, assess the consumer impact of imposing a moratorium on life insurers using predictive genetic information, unless the consumer provides genetic information to a life insurer to demonstrate that they are not at risk of developing a disease.

- Recommendations in relation to access to medical information:
 - life insurers request authorisation to access a consumer's medical information at the time of an application for an insurance policy and when making a claim.
 - the Financial Services Council and the **RACGP** collaborate to prepare and implement agreed protocols and standards for:
 - Requesting and providing relevant medical information only — not complete medical files;
 - uniform authorisation forms for access to medical information
Ethical, legal, & social scenarios

- When children are found by the neonatal screening programme to be carriers of cystic fibrosis, it is best not to inform the family because of the unnecessary worry this can engender during childhood.
Ethical, legal, & social scenarios

- A female carrier of X-linked haemophilia A has two daughters under 10 years.
- They are at 50% risk of being carriers.
- They should have a genetic test now to see if they are carriers.
A man was recently diagnosed with autosomal dominant polycystic kidney disease (ADPKD). He realises that each of his children has a 50% chance of inheriting the condition from him. He asks his GP to organise a kidney ultrasound for his two children aged 10 and 7, to see if they have inherited the condition. The GP should do so.
Ethical, legal, & social scenarios

- The antenatal screening programme identified a pregnancy where the fetus had multiple anomalies caused by a chromosomal imbalance.
- The otherwise healthy father was found to be a carrier of a balanced chromosome rearrangement.
- The geneticist offered to see and test his relatives' chromosomes to see if they might be at high risk of having affected children, but the man did not want them contacted.
- The geneticist should attempt to contact them without the man's consent.
Ethical, legal, & social scenarios

- A 20yr male is requesting predictive testing for HD.
- There is a strong family history of HD (genetically confirmed) on his maternal side.
- His mother (45yrs) is asymptomatic and does not want to be tested for HD.
- We should offer to test the young man.
Conclusions
Key learning points

- **Awareness of genetic disease:**
 - Increased patient requests
 - Take a family history and ascertain risk
 - Refer on for specialist advice

- **Genetics services/genetic counselling:**
 - Diagnostic and risk evaluation
 - Disease education and patient support groups
 - Identification of at risk family members
 - Reproductive options (CVS, amniocentesis, PGD)
Key learning points

- Genetic testing:
 - Indication
 - Diagnostic, predictive, carrier, reproductive, pharmacogenetic
 - Mechanism and test type, and limitations
 - Chromosome - karyotype, FISH, microarray
 - Gene - Sanger, gene panel, exome, genome
 - Consent
 - Interpretation of report and notification of results
 - Ethical and psychosocial implications
Any questions?
Any feedback??

Welcome to Genetic Health Queensland

Genetic Health Queensland (GHQ) is a statewide service that provides clinical genetic services across Queensland by a team of specialist health-care professionals. We see individuals and their families with a suspected or known inherited or genetic health condition.

A team of medical specialists (clinical geneticists) and genetic counselors work together at GHQ to look after patients and families all over Queensland. Regular clinics are held in Brisbane, Gold Coast, Toowoomba, Nambour, Bundaberg, Rockhampton, Mackay, Townsville and Cairns. Telehealth consultations are also available for suitable patients. The Queensland Familial Cancer Registry (QFCR), Queensland Cardiac Genetics Clinic, and RBWH Renal Genetics Clinic are also based within GHQ.