Metastatic Melanoma New therapies and their toxicities

Melissa Eastgate Deputy Director Medical Oncology RBWH 23 July 2016

Melanoma Incidence in Australia

- 2015
 - 1675 deaths
 - 12960 new cases
 - 3.6% of cancer deaths

AJCC Staging System for Cutaneous Melanoma

T1 T2 T3 T4	Thickness ≤ 1.0 mm 1.01- 2 mm 2.01- 4 mm >4.0 mm	Ulceration Status/Mi a: without + mitosis < a: without, b: with a: without, b: with a: without, b: with	i toses 1/mm², b: with or mitoses ≥ 1/mm²
N1 N2 N3	Met. Nodes, n 1 node 2-3 nodes ≥ 4, matted nodes, or in-transit or	Nodal Met. Mass a: micro, b: macro a: micro, b: macro, c: in-transit/satellites without metastatic nodes satellite(s) with metastatic nodes	
M1a M1b M1c	Site Distant skin, SQ, or no Lung metastases All other visceral meta Any distant metastase	odal metastases Istases Iss	LDH Normal Normal Normal Elevated

Balch CM, et al. J Clin Oncol. 2009;27:6199-206.

Survival in Melanoma by Stage

Balch CM, et al. J Clin Oncol. 2001;19:3635-3648.

Melanoma skin cancer incidence and mortality, 1968 to 2012

Where can we make a difference?

- Prevention/early detection
- Better neo/adjuvant therapy
- Improved treatment in the advanced setting.
 - Downstage to enable curative treatment
 - Picking the right treatment for the right patient
 - Prolong overall survival
- Reduced toxicity of treatment

Metastatic melanoma available treatment: 1970–2015

50%, Younger patients

IMMUNOTHERAPY

Tumor-Derived Immune Suppression

- Tumors go to great lengths to evade the immune response
- Systematic studies have identified multiple mechanisms cancers employ to defeat the immune response
 - Immunosuppressive cytokines: TGF-β, IL-4, -6, -10
 - Immunosuppressive immune cells: T-regs, macrophage
 - Disruption of immune activation signaling: loss of MHC receptor, IDO production
- Goal: therapy strategies that "liberate" underlying anticancer immune responses
- Immune checkpoints not even in the picture in 2008!

Weiner LM. N Engl J Med. 2008;358:2664-2665.

Ipilimumab, gp100, or Both in Advanced Melanoma (MDX010-20): Survival

Hodi FS, et al. N Engl J Med. 2010;363:711-723.

Ipilimumab (checkpoint inhibitor)

- Increased long term survival for a small number of patients
- Significant toxicity

PD-1 Adaptive Resistance to Immunotherapy

- PD-L1 can be expressed on tumor cells either endogenously or induced by association with T cells (adaptive immune resistance)^[1,2]
 - PD-1:PD-L1 interaction results in T cell suppression (anergy, exhaustion, death)
- In RCC, melanoma, and other tumors, PD-L1 expression has been shown to be associated with adverse clinical/pathologic features, eg, more aggressive disease and shorter survival^[3]

1. Topalian SL, et al. Curr Opin Immunol. 2012;24:207-212. 2. Taube JM, et al. Sci Transl Med. 2012;4:127ra37. 3. Thompson RH, et al. Proc Natl Acad Sci USA. 2004;101:17174-17179.

Pembrolizumab Versus Ipilimumab For Advanced Melanoma: Final Overall Survival Analysis of KEYNOTE-006

Jacob Schachter,¹ Antoni Ribas,² Georgina V. Long,³ Ana Arance,⁴ Jean-Jacques Grob,⁵ Laurent Mortier,⁶ Adil Daud,⁷ Matteo S. Carlino,⁸ Catriona McNeil,⁹ Michal Lotem,¹⁰ James Larkin,¹¹ Paul Lorigan,¹² Bart Neyns,¹³ Christian Blank,¹⁴ Teresa M. Petrella,¹⁵ Omid Hamid,¹⁶ Honghong Zhou,¹⁷ Scot Ebbinghaus,¹⁷ Nageatte Ibrahim,¹⁷ Caroline Robert¹⁸

¹Ella Lemelbaum Institute for Melanoma, Sheba Medical Center, Tel Hashomer, Israel; ²University of California, Los Angeles, Los Angeles, CA; ³Melanoma Institute Australia, The University of Sydney, Mater Hospital, and Royal North Shore Hospital, Sydney, Australia; ⁴Hospital Clinic de Barcelona, Barcelona, Spain; ⁵Aix Marseille University, Hôpital de la Timone, Marseille, France; ⁶Université Lille, Centre Hospitalier Régional Universitaire de Lille, Lille, France; ⁷University of California, San Francisco, San Francisco, CA; ⁸Westmead and Blacktown Hospitals, Melanoma Institute Australia; and The University of Sydney, Sydney, Australia; ⁹Chris O'Brien Lifehouse, Royal Prince Alfred Hospital, and Melanoma Institute Australia, Camperdown, Australia; ¹⁰Sharett Institute of Oncology, Hadassah Hebrew Medical Center, Jerusalem, Israel; ¹¹Royal Marsden Hospital, London, UK; ¹²University of Manchester and the Christie NHS Foundation Trust, Manchester, UK; ¹³Universitair Ziekenhuis Brussel, Brussels, Belgium; ¹⁴Netherlands Cancer Institute, Amsterdam, Netherlands; ¹⁵Sunnybrook Health Sciences Center, Toronto, ON; ¹⁶The Angeles Clinic and Research Institute, Los Angeles, CA; ¹⁷Merck & Co., Inc., Kenilworth, NJ; ¹⁸Gustave Roussy and Paris-Sud University, Villejuif, France

PRESENTED AT: ASCO ANNUAL MEETING '16 Slides are the property of the author. Permission required for reuse.

Presented By Jacob Schachter at 2016 ASCO Annual Meeting

Presented By Jacob Schachter at 2016 ASCO Annual Meeting

Incidence of Immune-Mediated AEs^a

Presented By Jacob Schachter at 2016 ASCO Annual Meeting

Updated Results From a Phase III Trial of Nivolumab Combined With Ipilimumab in Treatment-naïve Patients With Advanced Melanoma (Checkmate 067)

Jedd D. Wolchok,¹ Vanna Chiarion-Sileni,² Rene Gonzalez,³ Piotr Rutkowski,⁴ Jean-Jacques Grob,⁵ C. Lance Cowey,⁶ Christopher D. Lao,⁷ Dirk Schadendorf,⁸ Pier Francesco Ferrucci,⁹ Michael Smylie,¹⁰ Reinhard Dummer,¹¹ Andrew Hill,¹² John Haanen,¹³ Michele Maio,¹⁴ Grant McArthur,¹⁵ Dana Walker,¹⁶ Joel Jiang,¹⁶ Christine Horak,¹⁶ James Larkin,^{17*} F. Stephen Hodi^{18*}

¹Memorial Sloan Kettering Cancer Center, Ludwig Institute for Cancer Research and Weill Cornell Medical College, New York, NY, USA; ²Oncology Institute of Veneto IRCCS, Padua, Italy; ³University of Colorado Cancer Center, Denver, CO, USA; ⁴Maria Sklodowska-Curie Memorial Cancer Center & Institute of Oncology, Warsaw, Poland; ⁵Hospital de la Timone, Marseille, France; ⁶Texas Oncology-Baylor Charles A. Sammons Cancer Center, US Oncology Research, Dallas, TX, USA; ⁷University of Michigan, Ann Arbor, MI, USA; ⁸Department of Dermatology, University of Essen, Essen, Germany; ⁹European Institute of Oncology, Milan, Italy; ¹⁰Cross Cancer Institute, Edmonton, Alberta, Canada; ¹¹Universitäts Spital, Zurich, Switzerland; ¹²Tasman Oncology Research, QLD, Australia; ¹³Netherlands Cancer Institute, Amsterdam, The Netherlands; ¹⁴University Hospital of Siena, Siena, Italy; ¹⁶Peter MacCallum Cancer Centre, Victoria, Australia; ¹⁶Bristol-Myers Squibb, Princeton, NJ, USA; ¹⁷Royal Marsden Hospital, London, UK; ¹⁸Dana-Farber Cancer Institute, Boston, MA, USA. *Contributed equally to the study

PRESENTED AT: ASCO ANNUAL MEETING '16 Slides are the property of the author. Permission required for reuse.

Progression-Free Survival (Intent-to-Treat Population)

Database lock Nov 2015

6

Progression-free Survival by Tumor PD-L1 Expression

 For the original PD-L1 PFS analysis, the descriptive hazard ratio comparing NIVO+IPI vs NIVO was 0.96, with a similar median PFS in both groups (14 months)

Database lock Nov 2015

10

Immune-Related AEs With Immunotherapy

Slide credit: clinicaloptions.com

Kinetics of Appearance of irAEs With Ipilimumab

Combined analysis of 325 participants with 10 mg/kg IV q3w x 4

Slide credit: <u>clinicaloptions.com</u>

Immune-Mediated Endocrinopathies

- Can be serious or fatal if not managed correctly
- Hypophysitis, thyroid disease, and primary adrenal insufficiency have all been reported
- Mechanism of injury not fully understood
- Monitor pt for pituitary, thyroid, or adrenal disease
- Check TFTs at baseline and prior to each dose
- Time to onset may be much later; median 11 wks

Slide credit: clinicaloptions.com

TARGETED THERAPY

BRIM-3: OS with vemurafenib vs DTIC in patients with BRAF V600E-mutant melanoma

OS=overall survival; CI=confidence interval; HR=hazard ratio.

McArthur GA, et al. Lancet Oncol 2014;15:323-32.

Genomic Analysis and 3-Year Efficacy and Safety Update of COMBI-d

A phase 3 study of dabrafenib + trametinib vs dabrafenib monotherapy in patients with unresectable or metastatic *BRAF* V600E/K–mutant cutaneous melanoma

K.T. Flaherty, M.A. Davies, J. Grob, G.V. Long, P. Nathan, A. Ribas, C. Robert, D. Schadendorf, D.T. Frederick, M.R. Hammond, J. Jane-Valbuena, X.J. Mu, M. Squires, S.A. Jaeger, S.R. Lane, B. Mookerjee, L.A. Garraway

PRESENTED AT: ASCO ANNUAL MEETING '16 Slides are the property of the author. Permission required for reuse.

COMBI-d: PFS and OS^a

58% of D+T patients alive at 3 years still on D+T

Overall Survival

COMBI-d: Normal LDH^a and < 3 Disease Sites^b

Conclusions

- With additional follow-up, dabrafenib + trametinib continued to show significant benefit over dabrafenib monotherapy despite cross-over
 - 3-year OS, 44% vs 32%
 - 3-year PFS, 22% vs 12%
- Best 3-year outcome with dabrafenib + trametinib was observed in patients with normal LDH and < 3 disease sites
 - 3-year OS, 62%
 - 3-year PFS, 38%
- The safety profile was similar to previous reports for dabrafenib + trametinib, with no unexpected toxicities
- Longest OS follow-up among randomized phase 3 trials evaluating BRAFi + MEKi in patients with BRAF-mutant metastatic melanoma

PRESENTED AT: ASCO ANNUAL MEETING '16 Slides are the property of the author. Permission required for reuse.

Presented by: Keith T. Flaherty, MD

Most Common AEs With Approved Targeted Agents in Advanced Melanoma

AE (≥ Grade 2), %	Vemurafenib ^[1]	Dabrafenib ^[2]	Trametinib ^[3]
Arthralgia	21	5	NR
Rash	18	NR	27
Fatigue	13	6	9
Cutaneous SCC/ keratoacanthoma	12/8	6 (combined)	NR
Hyperkeratosis	6	13	NR
Pyrexia	NR	Pyrexia	NR
Headache	5	5	NR
Photosensitivity (any grade)	12	3	NR
Hypertension	NR	NR	12

1. Chapman PB, et al. N Engl J Med. 2011;364:2507-2516. 2. Hauschild A, et al. Lancet. 2012;380:358-365. 3. Flaherty KT, et al N Engl J Med. 2012;367:107-114.

Pyrexia managment

- Mild paracetamol, NSAIDs
- Moderate or associated with rigors, dehydration – withhold dabrafenib/trametinib until resolves
- Severe, involving hypotension, renal failure withhold dabrafenib/trametinib steroids

once resolved can safely restart therapy

Australian context

- BRAF mutant dabrafenib and trametinib on PBS
- BRAF wildtype pembrolizumab/nivolumab on PBS
- Ongoing trials PD1 +CTLA4

 Adjuvant PD1
 Adjuvant CTLA4
 Adjuvant BRAF inhibitor
 Sequencing
 Combination braf/immunotherapy

Case 1 - immunotherapy

- 63 year old male
- Melanoma removed from shoulder 2013
- March 2015 presented with R arm weakness then seizures
- Imaging showed multiple brain mets as well as lung and mediastinal disease
- Bronchoscopy and biopsy confirmed metastatic melanoma
- BRAF wild type

Case 1 cont'd

- Seizures controlled on dex/carbamazepine
- Started on pembrolizumab early May 2015
- Early June phone call from family R arm weakness had worsened, some confusion
- Dexamethasone increased to 4mg bd
- Pembrolizumab continued
- July arm weakness better, no seizures, dex reduced to 2mg daily then subsequently ceased

Case 1 cont'd

- Now:
 - Working in son's business
 - Off dex
 - No seizures
 - Back driving
 - Near complete response on scans
 - Considering break from pembrolizumab

Case 2 – targeted therapy

- 52 year old man
- Sept 2014
- In follow up for NHL
- Incidental finding on imaging of subcutaneous lesion on abdo wall, biopsy – melanoma
- No known skin primary
- BRAF mutant

Case 2 cont'd PET

Case 2 cont'd

- 2 months after starting treatment presented to DEM with 5 days of fevers/rigors/sweats
- SBP 60
- Admitted to ICU, treated with noradrenaline
- EF 48% on echo
- Deranged LFTs
- Dabrafenib/trametinib withheld
- Recovered rapidly

Case 2 cont'd

- Recommenced full dose dabrafenib/trametinib 3 weeks later
- No further issues since then, remains on treatment
- PET scan 2/3/16 complete response