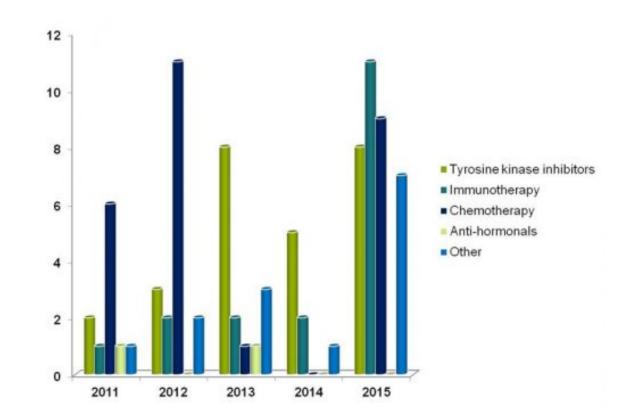


Metro North Hospital and Health Service Putting people first

"Till death do us part" Long term oral therapies that control cancer without cure


Dr Nick Weber

Clinical Haematologist

Introduction

- The pace of research in cancer is accelerating
- Better understanding of the molecular basis of haematological malignancies has led to the development of rational drug design and 'targetted' therapies with unique side effect profiles
- Fast-tracking of drug development and regulatory approval results in earlier dissemination into the clinic
 - First-in-class agents
 - Second and third generation agents
 - Combination therapies
- Challenging for both haematologists and patients to navigate this changing treatment landscape
- GPs are likely to see increasing number of new oral agents as haematological malignancies become chronic diseases

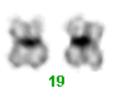
Ţ

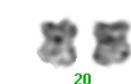
- CML tyrosine kinase inhibitors
- Myeloma immunomodulatory agents (thalidomide + derivatives)
- CLL ibrutinib and idelalisib

Case 1

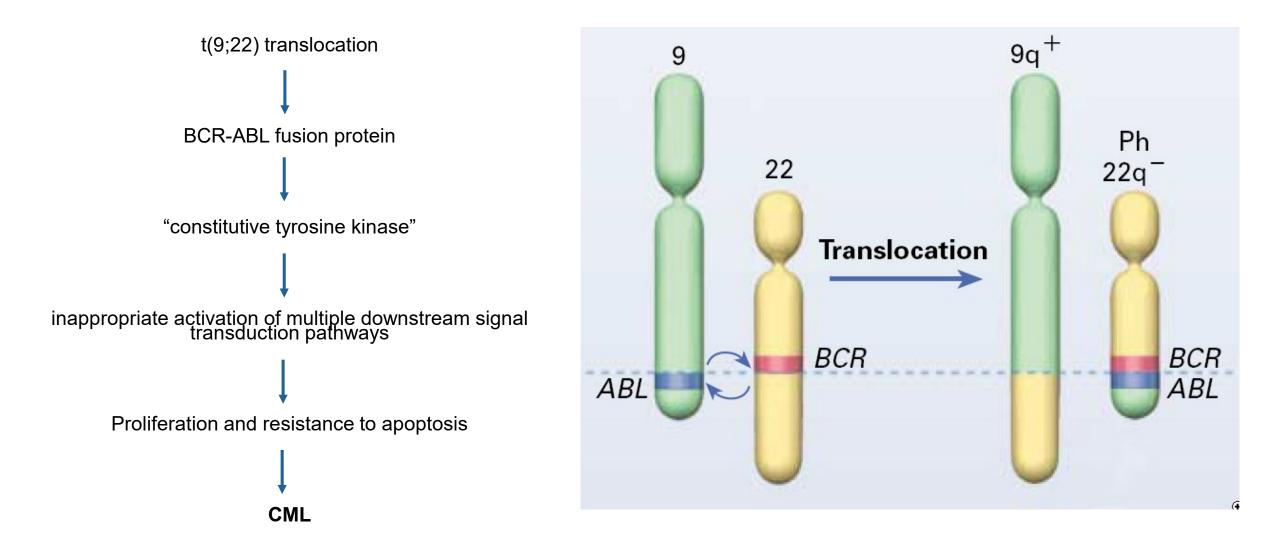
- 68 year old male painter presents with fatigue and abdominal discomfort, vague weight loss
- Massive splenomegaly on abdominal examination

Diff: Manual	Specimen: Blood	dWCH,F1g,WCVH,BH2,PB,	
Hgb : 128 L	WBC :127.7 C		
PLT : 163	:127.7 H		
RBC : 4.24 L	HCT : 0.43		
MCV : 101 D	MCH : 30.2		
RDW : 17.2 H	MCHC : 299 C Pres	s shift-insert to view re	eference ranges
Neut (65 %):	82.90 H Meta (12	%): 15.97 H AbnLy	(%):
Lymph (3 %):	3.68 Mye (4	%): 5.53 H ProLy	(%):
Mono (7 %):	8.60 H Prom (1	%): 1.23 H Plasm	(%):
Eosin (2 %):	3.07 H Blast (1	%): 1.23 H Other	(0 %): 0.00
Baso (4 %):	5.53 H AbnIm (%): NRC	0 /100 WBC
Band (0 %):	0.00 AtyLy (%): NRBC	0 H/100 WBC
SusFlgWBC_AS,IG	%,BL?,LEFT_S		
Comment:	Patient Age: 68 years	Val: 1mr5	13.0


Leucocytosis: differential diagnosis

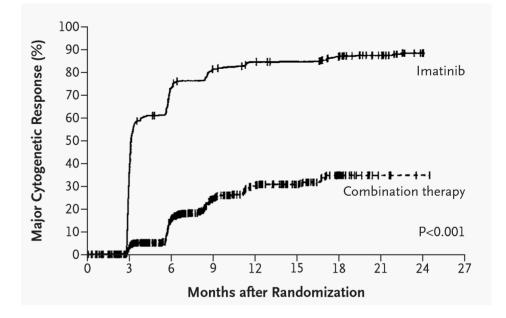

- Reactive leucocytosis

- Very common; usually mild-moderate (10-20 x 10⁹/L), with variable elevation of neutrophils, lymphocytes and monocytes; *occasional* immature forms; platelets may be normal or elevated
 - infection
 - drugs (eg steroids)
 - inflammatory conditions eg inflammatory arthropathies
 - pregnancy
 - massive trauma/surgery/burns ("leukaemoid reaction")
- Chronic myeloid leukaemia
 - Peripheral blood PCR testing for BCR-ABL fusion gene is simple and ~99% sensitive/specific
- Other myeloproliferative neoplasms: polycythaemia vera, myelofibrosis
 - Generally distinguishable by associated findings of erythrocytosis, abnormal red cell morphology
 - JAK2 and CALR mutation testing can be helpful to confirm
- Chronic myelomonocytic leukaemia: usually older patients, dysplastic findings on film with prominent, chronic monocytosis



CML – molecular pathogenesis

F


Ę

STI-571 / imatinib / Glivec

=

- Randomised comparison of "standard of care" (cytarabine + interferon) to monotherapy with imatinib
- Imatinib associated with
 - Better responses
 - Improved freedom from progression to accelerated / blast phase
 - Better tolerated
 - (subsequent studies) > 90% survival beyond 5 years

Imatinib: drawbacks

- Sounds "perfect" ... but it's not
- Treatment failure in up to 30% of patients
 - Failure to achieve molecular remission target (<0.1% transcript level)
 - Intolerance
 - Oedema
 - Asthenia, fatigue, cramps, myalgias
 - Diarrhoea
 - Rash

Second-generation TKIs

- Similar mechanism but structural differences = more "powerful" inhibitors of BCR-ABL, with differing efficacy against BCR-ABL mutations that can cause resistance to Glivec
- Clinical studies show more rapid, and potentially "deeper" responses, with very low rates of transformation to advanced stages of disease
- BUT because the overall survival of CML is so good these days (> 90% at 5 years), very difficult to demonstrate a difference in overall survival
- All are available on PBS for initial therapy of CML in chronic phase
- Choice between imatinib and second generation agents remains a matter of debate, recognising lack of absolute survival benefit and "unique" individual toxicities of the three agents

Nilotinib ("Tasigna")

• More rapid, and overall "deeper" response compared to imatinib

• BUT:

- Must be taken on an empty stomach, twice a day: compliance difficulties
- Exacerbation of **diabetes**
- LFT derangement, pancreatitis
- -? Increased risk of cardiovascular disease

Requires ongoing (ie lifelong) monitoring and management of cardiovascular risk factors

Dasatinib ("Sprycel")

- More rapid, and overall "deeper" response compared to imatinib
 - (but no direct comparison to Tasigna ever likely to occur)
- Once daily dosing, no dietary requirement (← ? better compliance)
- BUT as with nilotinib, significant toxicities
 - Pleural effusions unpredictable, often late in course
 - Peripheral oedema
 - Pulmonary hypertension
 - Cytopenias

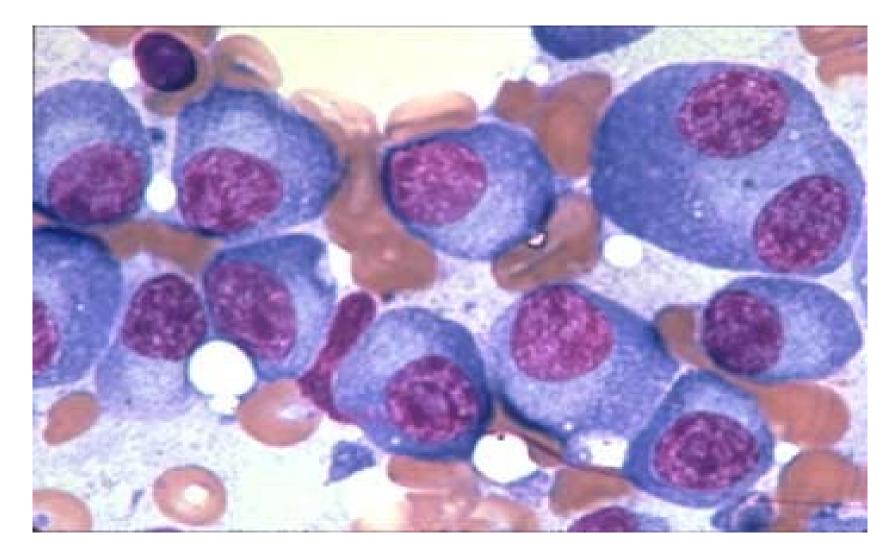
Case 2

Ţ

• 69 year old retired farmer, presents with fatigue

Diff: Reviewed	Spec	cimen: Bl	bod	Specimen type		Blood	Urate	0.44 mmol/L (0.15 - 0.50)
Hgb : 76 C	WBC	: 3.6 L				Clear	Protein	110 H g/L (60 - 80)
PLT : 132 L		: 3.6 L		Sodium	142	mmol/L (135 - 145)	Albumin	<mark>23 L</mark> g/L (35 - 50)
RBC : 2.58 L	НСТ	0.23 L		Potassium	4.1	mmol/L (3.5 - 5.2)	Globulin	87 H g/L (25 - 45)
MCV : 89	MCH	: 29.5		Chloride	110	mmol/L (95 - 110)	Bilirubin	10 umol/L (< 20)
RDW : 17.8 H	MCHC	: 332	Pres	Bicarb.		mmo]/L (22 - 32)		< 4 umol/L (< 4)
Neut (61* %):	2 17					mmol/L (4 - 13)	ALP	49 U/L (30 - 110)
Lymph (29* %):				Glucose		mmol/L (3.0 - 7.8)	Gamma GT	37 U/L (< 55)
				i die e trig tat		(3.0 - 6.0)	ALT	
Mono (8* %):						mmol/L (2.9 - 8.2)	AST	27 U/L (< 35)
Eosin (2 %):	0.06			Creatinine		umo]/L (64 - 108)	LD	200 U/L (120 - 250)
Baso (0 %):	0.01			Urea/Creat.	63	(40 - 100)	Calcium	2.32 mmol/L (2.10 - 2.60)
NRBC /1	00 WBC			eGFR	85	mL/min/(> 60)	Corr Ca	2.66 H mmol/L (2.10 - 2.60)
SusFlgATY LY				lab use	85	1.73m ^ 2		
	Patient	Age: 69	years	Comment:		Age:69 years I 1	H 1	L 0 KC 4.0

SERUM PROTEIN ELECTROPHORESIS


Total Protein	110 H	g/L	(60 - 80)				
Albumin			(35 - 50)				
Total Globulin	87 H	g/L	(25 - 45)				
Monoclonal Protein	DETECTE	Ð					
Alpha 1	3	g/L	(3 - 6)				
Alpha 2	7	g/L	(4 - 10)				
Beta	4 L	g/L	(5 - 11)				
Total Gamma	72 H	g/L	(7 - 18)				
Lambda IgG	65 H	g/L	(0 - 0)				
Gamma (Residual polyclonal)	7	g/L	(7 - 18)				
COMMENT:							
Decreased residual gamma globulins.							

Specimen Type:	Blo	bod	
K/L Ratio (NL) Rpt:		K Dil (NL):	L Di
IgG	*	g/L	(7.0 - 16.0)
IgA	0.1 L	g/L	(1.0 - 4.0)
IgM	0.1 L	g/L	(0.4 - 2.3)
Kappa FLC (N Latex)	3 L	mg/L	(7 - 22)
Lambda FLC (N Latex)	32 H	mg/L	(8 - 27)
K/L Ratio (N Latex)	0.10 L		(0.31 - 1.56)
The current reference rang	ges for Free	e Light Chains	are
those recommended by the m	nanufacturer		

Monoclonal protein: when should I be worried?

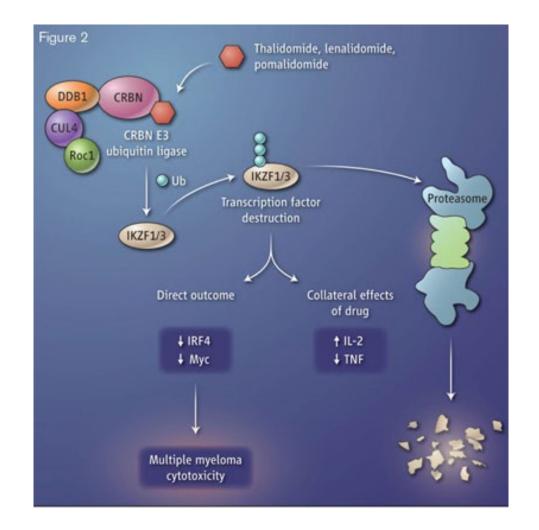
- 5% of people aged over 70 will have a detectable monoclonal protein
- The majority will be 'MGUS' with risk of progression to MM approximately 1% per year
- Features that raise concern for myeloma:
 - HyperCalcaemia
 - New Renal dysfunction
 - **A**naemia
 - Bone pain due to lytic lesions
- It is worthwhile screening patients who present with any of these features using **serum electrophoresis** *and* **serum free light chains**
- When *not* to be worried about myeloma:
 - Polyclonal hypergammaglobulinaemia
 - raised ESR in the absence of a monoclonal protein
 - Mildly elevated light chains with normal ratio (common in CKD)

Bone marrow biopsy

1840s	1940s	1960s	1980s	1990s	2000s	2010s
Case reports; Bence Jones protein detected	Cardinal signs of myeloma reported	Melphalan + Prednisone	Smoldering Myeloma and MGUS identified	High-dose melphalan Autologous stem cell transplant Bisphosphonates	Thalidomide Bortezomib/Doxil Bortezomib/Doxil Lenalidomide Tandem transplant	Multidrug combinations Small molecules Monoclonal antibodies Molecular imaging Smoldering Myeloma trials
© 2011 Ame CCR Focus	rican Associa	tion for Cancer Re	esearch			AAR

Thalidomide - history

- Broadly marketed in late 1950s as sedative and anti-emetic ... in certain regions specifically promoted as highly effective treatment for morning sickness in prengnacy
- By 1961, clearly identified as teratogenic causing limb deformities and amelia
- Some years later, the teratogenic effects were attributed to inhibition of new vessel formation (... critical to embryonic lengthening of arms, legs, fingers and toes)
- In 1970s : new vessel formation ("angiogenesis") established as important to the development of solid tumours
- ... leads to investigation of angiogenesis inhibitors as anti-cancer therapies
- 1990s Folkman et al hypothesize that growth of blood cancers including myeloma are dependent of angiogenesis
- This leads to sequential clinical trials of thalidomide (= recognised angiogenesis inhibitor) that eventually culminate in several studies in the 1990s demonstrating superior clinical efficacy to "standard of care" therapies in myeloma patients

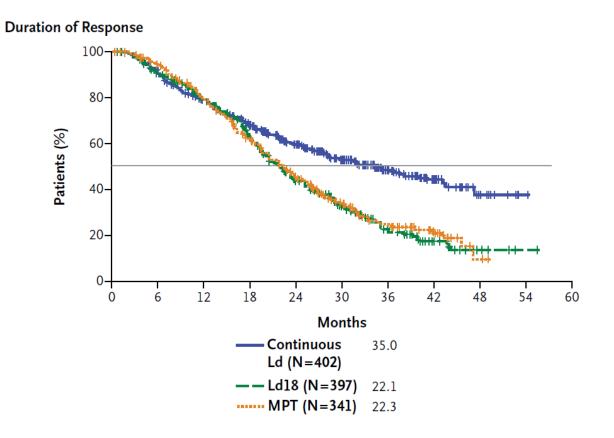

Thalidomide and other "iMIDs" – mechanisms of action

- · Suppression of angiogenesis
- · Interference with supportive microenvironment
- · Alteration of expression of cellular adhesion molecules
- · "Immunomodulation" (IMID)

Increase cell mediated cytotoxicity

Increased cytokines eg IL-2

Inhibition of specific cellular pathways that are know to be aberrantly active in myeloma (eg NFKB)



Thalidomide – side effects

- Sedation
 - This is amongst the effects is was originally marketed for in late 1950s
 - Always take dose at night
- Constipation
 - Usually manageable with simple aperients
- Peripheral neuropathy
 - Sensory, length dependent
 - Distal numbress followed by paraesthesia that progresses distal to proximal
 - Time and dose dependent
 - Most common adverse effect that leads to termination of therapy
- Increased risk of venous thromboembolism
 - all patients must at least be on aspirin, and those at "high risk" (immobility, surgery, prior thrombosis) should be considered from LMWH prophylaxis

Lenalidomide ("Revlimid")

- "More potent "immunomodulation"
- Less neurotoxicity
- PBS-reimbursed for both untreated and relapsed disease
- Effective 'backbone' for combination with monoclonal antibodies such as elotuzumab and daratumomab

Lenalidomide (Revlimid) – side effects

- Compared to thalidomide
 - MORE cytopenias (esp neutropenia), ? rashes
 - LESS sedation, neuropathy
 - SIMILAR increased risk of venous thromboembolism
 - o all patients should at least be on aspirin +/- anticoagulation if risk factors present

Second primary malignancy risk?

 $_{\odot}$ Sun avoidance and skin checks are recommended

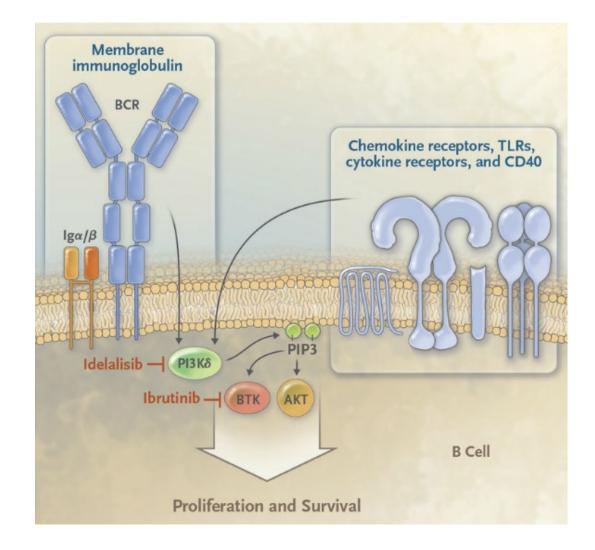
Case 3

- 59 year old IT technician presents with lethargy
- Mild cervical lymphadenopathy

Diff:	Revie	ewed	Sp	eci	men:	Blood	
Hgb :	144		WBC		17.5	Н	
PLT :	171				17.5	Н	
RBC :	5.11		HCT		0.43		
MCV :	84		MCH		28.2		
RDW :	13.8		MCHC		333	Pre	S
Neut	(15	%):	2.68				
Lymph	(81	%):	14.16	Η			
Mono	(3	%):	0.45				
Eosin	(1	%):	0.11				
			0.11				
NRBC		/1	00 WBC				
SusFlg							
Comme	nt:		Patien	t A	\ge: {	59 years	
Smear	cells	5.					

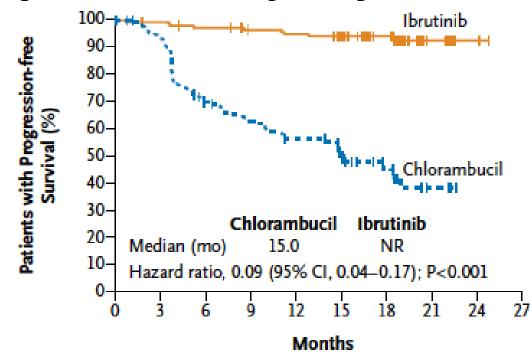
Flow Cytometric Analysis	Specimen :	Blood	Analysis:							
Specimen: Peripheral blood	ecimen: Peripheral blood					Percentage of cells analysed (gated): 73% Region gated: Lymphoid				
Summary: Consistent with B-CLL				Absolute total B-cell (CD19+) count: 10971						
Immunophenotype:			B-CELLS		T-CELLS					
CD5 (weak), CD19, CD20 (weak), CD23 and kappa lig	ght chains (weak)		CD10: CD19:	<1% 73%	CD3: CD4:	22% 11%				
<u>Comment:</u> An immunoglobulin light chain restricted B-cell popula approximately 58% of the total cells. The immunoph B-CLL. Correlation with other laboratory findings is r	enotype is consister	nt with	CD20: CD5+/CD20 CD23: SIg kappa: SIg lambda	60% 73% (weak)	CD8: CD5+/C	11% CD20-: 24%				
<u>Analysis:</u> Percentage of cells analysed (gated): 73%			MISC.		NK-CELLS					
Region gated: Lymphoid		CD34:	<1%	CD16+/CD CD56+/CD3-:	3-: 5% 5%					

Chronic lymphocytic leukaemia - diagnosis


- Most commonly diagnosed after FBC performed either as "routine" or for "nonspecific" symptoms such as fatigue, sweats
- FBC shows elevated lymphocyte count
 - -+/- other cytopenias (anaemia, thrombocytopenia), due to marrow infiltration, splenomegaly and/or immune destruction
- Abnormal circulating lymphocytes are **monoclonal B-cells** that have a characteristic profile of cell surface markers that can be identified by **flow cytometry** ("lymphoid marker studies")
 - Consider this test if a patient has a persistent lymphocytosis not explained by other conditions (esp infection, inflammatory conditions, <u>smoking</u>)
 - And especially if associated with lymphadenopathy, splenomegaly, or other count abnormalities
- In contrast, reactive lymphocytosis is usually **polyclonal** and predominantly **T-cell**

CLL – indications for treatment

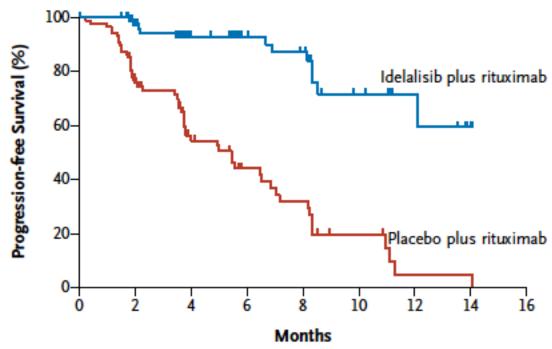
- Regarded as incurable = treatment reserved for patients who have "symptomatic" disease
 - Progressive Lymphadenopathy / mass
 - Symptomatic splenomegaly
 - Bone marrow failure -> anaemia, thrombocytopenia
 - Constitutional symptoms (fevers, sweats, weight loss)
- Existing standard treatments combine chemotherapy drugs (fludarabine, chlorambucil) with an anti-CD20 antibody (rituximab, obinutuzumab, ofatumumab)
 - Infection risk (including PCP, shingles, bacterial infections)
 - Skin cancers ++ with fludarabine, rituximab


Novel agents for CLL

- Ibrutinib: BTK inhibitor
- Idelalisib: PI3Kδ inhibitor
- Both agents are active in a range of lymphoid malignancies including CLL, mantle cell and follicular lymphoma
- Impressive activity in high-risk disease (ie 17p deletion and/or fludarabine-refractory)

Ibrutinib ("Imbruvica") – specific issues

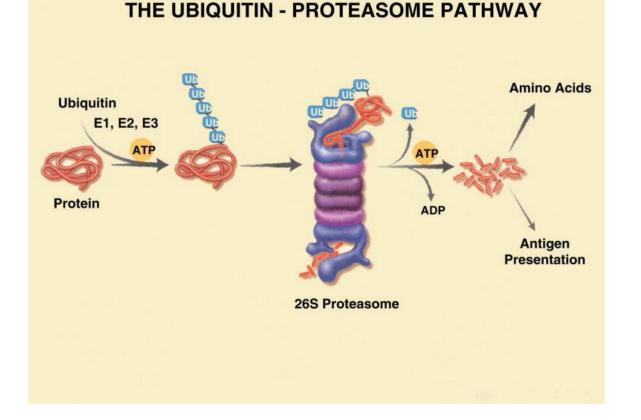
- Increased bleeding, especially gastrointestinal
 - Patients on warfarin not allowed to participate in clinic trials
- Atrial fibrillation
- Cytopenias
- Interactions with other drugs via CYP3A4 metabolic pathway



Progression-free Survival According to Investigator Assessment

Idelalisib: specific issues

- Pneumonitis
 - Prophlaxis against Pneumocystis (with Bactrim) and monitoring for CMV is strongly recommended
- Colitis
 - Can result in profuse, watery diarrhoea that can be life threatening of not identified
 - Often "late" after commencement of therapy (not infreq > 12 months)
 - Treatment is with steroids +/- drug cessation


Conclusion

- Increasing number of orally-active therapies for common haematological malignancies, many with unique/distinct side-effect profiles
- Role of primary care practitioners in co-managing these patients is expanding:
 - Blood test monitoring
 - Adverse event surveillance
 - Preventative health issues
 - Cardiovascular risk factor management
- As always, don't hesitate to contact the haematologist if you're unsure or need advice

Proteasome inhibitors


- Unique mechanism of action
- Bortezomib:
 - Subcutaneous, once-twice weekly
 - Well-tolerated
 - Less neurotoxicity than IV administration
- Carfilzomib:
 - Second generation
 - Intravenous, 2 days/week
 - 5% risk of cardiac dysfunction

VZV prophylaxis with valaciclovir is recommended due to reactivation rates ~16% in clinical trials

Monoclonal antibodies

- Various agents in development
 - Anti-CD38: daratumumab, isatuximab
 - Anti-SLAMF7: elotuzumab
- The "Mabthera of myeloma"
- Most effective when used in combination with lenalidomide or bortezomib backbone
- All require IV administration and have significant risk of infusion reactions

