# Inside Out: Gastroenterology & Hepatology Workshop

Saturday 25 October 2025
Clinical Skills Development Service |
RBWH







# Metabolic dysfunction-associated fatty liver disease (MAFLD)

Dr Marnie Wood

Gastroenterologist & Hepatologist | RBWH



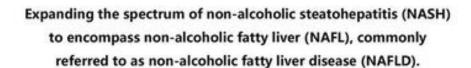




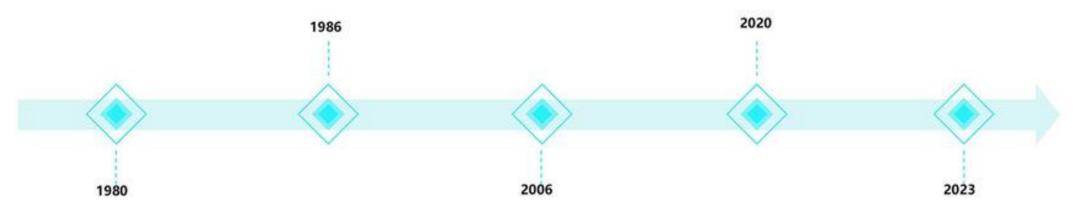
Dr Marnie Wood FRACP PhD

Gastroenterologist/Hepatologist RBWH

25<sup>th</sup> October 2025




#### Plan


- Solid understanding of the disease
- How to assess
- Who to refer
- How to manage
- What is coming

W. Shakespeare 1597

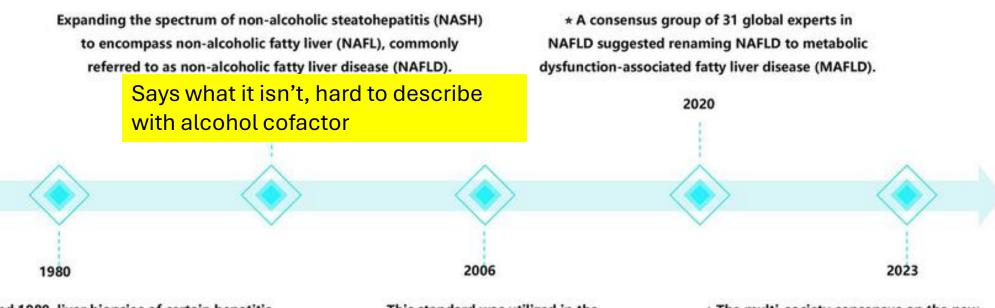
> The evolution of the nomenclature for NAFLD, MAFLD and MASLD



\* A consensus group of 31 global experts in NAFLD suggested renaming NAFLD to metabolic dysfunction-associated fatty liver disease (MAFLD).



Around 1980, liver biopsies of certain hepatitis patients revealed pathological changes resembling those of alcoholic hepatitis, which led to the establishment of the term non-alcoholic steatohepatitis (NASH).


This standard was utilized in the diagnosis and treatment guidelines for NAFLD and is integrated into the International Classification of Diseases (ICD-10).

\* The multi-society consensus on the new nomenclature for fatty liver disease was published, suggesting renaming NAFLD to "metabolic dysfunction-associated steatotic liver disease (MASLD).

\* In the development of NAFLD, MASLD accentuates metabolic cardiovascular risk factors more prominently than MAFLD

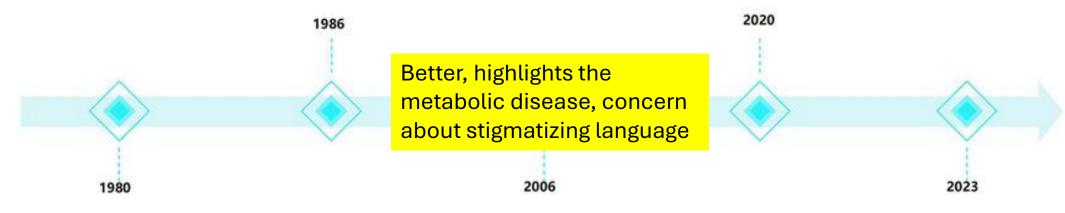
W. Shakespeare 1597

> The evolution of the nomenclature for NAFLD, MAFLD and MASLD



Around 1980, liver biopsies of certain hepatitis patients revealed pathological changes resembling those of alcoholic hepatitis, which led to the establishment of the term nonalcoholic steatohepatitis (NASH). This standard was utilized in the diagnosis and treatment guidelines for NAFLD and is integrated into the International Classification of Diseases (ICD-10).

\* The multi-society consensus on the new nomenclature for fatty liver disease was published, suggesting renaming NAFLD to "metabolic dysfunction-associated steatotic liver disease (MASLD).


\* In the development of NAFLD, MASLD accentuates metabolic cardiovascular risk factors more prominently than MAFLD

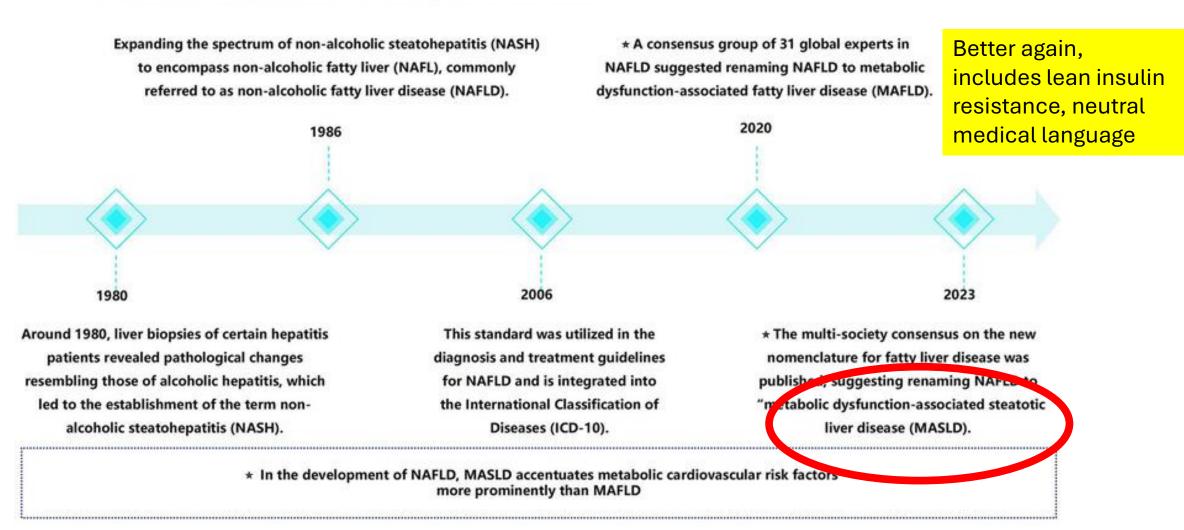
W. Shakespeare 1597

> The evolution of the nomenclature for NAFLD, MAFLD and MASLD

Expanding the spectrum of non-alcoholic steatohepatitis (NASH) to encompass non-alcoholic fatty liver (NAFL), commonly referred to as non-alcoholic fatty liver disease (NAFLD).

\* A consensus group of 31 global experts in NAFLD suggested renaming NAFLD to metabolic dysfunction-associated fatty liver disease (MAFLD).




Around 1980, liver biopsies of certain hepatitis patients revealed pathological changes resembling those of alcoholic hepatitis, which led to the establishment of the term nonalcoholic steatohepatitis (NASH). This standard was utilized in the diagnosis and treatment guidelines for NAFLD and is integrated into the International Classification of Diseases (ICD-10).

\* The multi-society consensus on the new nomenclature for fatty liver disease was published, suggesting renaming NAFLD to "metabolic dysfunction-associated steatotic liver disease (MASLD).

\* In the development of NAFLD, MASLD accentuates metabolic cardiovascular risk factors more prominently than MAFLD

W. Shakespeare 1597

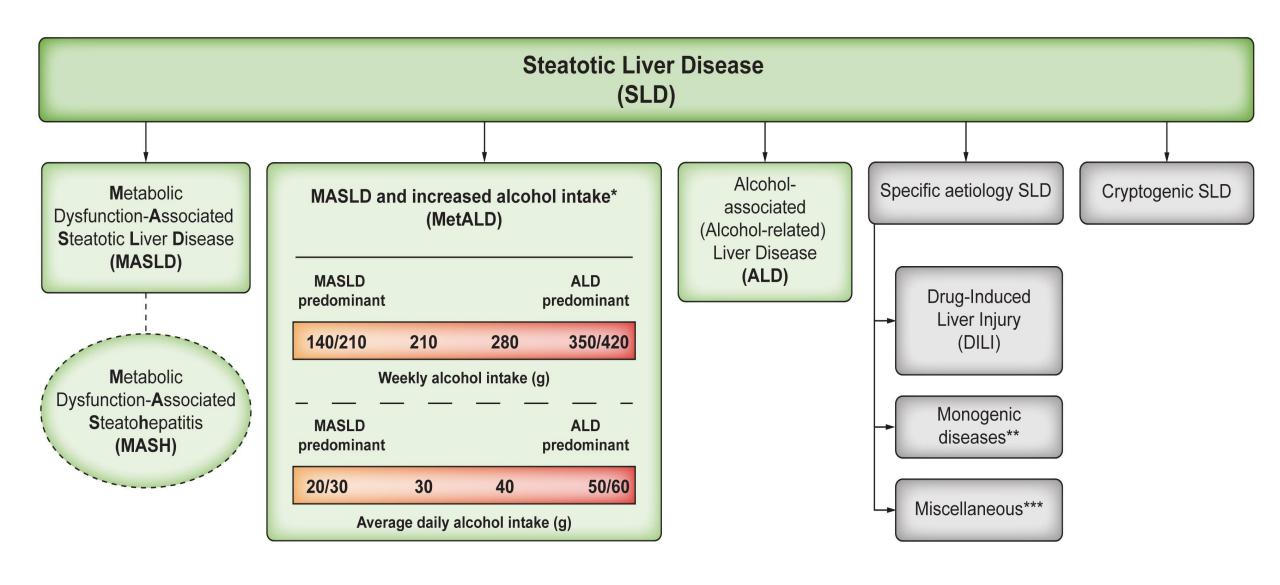
> The evolution of the nomenclature for NAFLD, MAFLD and MASLD



# 2024 was a big year for practice guidelines

## EASL-EASD-EASO Clinical Practice Guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD)<sup>\*</sup>

European Association for the Study of the Liver (EASL)\*, European Association for the Study of Diabetes (EASD), European Association for the Study of Obesity (EASO)

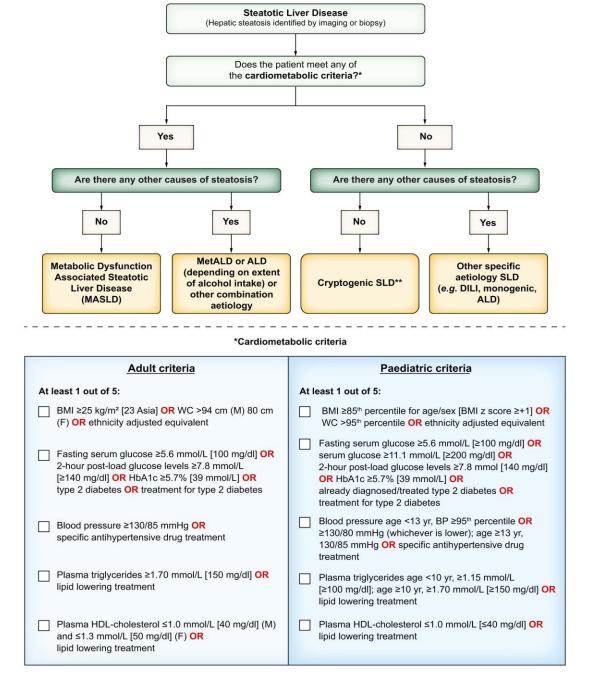

Metabolic dysfunction—associated steatotic liver disease: Update and impact of new nomenclature on the American Association for the Study of Liver Diseases practice guidance on nonalcoholic fatty liver disease

(b) Kanwal, Fasiha<sup>1,2,3</sup>; (c) Neuschwander-Tetri, Brent A.<sup>4</sup>; (d) Loomba, Rohit<sup>5</sup>; (d) Rinella, Mary E.<sup>6</sup> Author Information⊗

*Hepatology* 79(5):p 1212-1219, May 2024. | *DOI*: 10.1097/HEP.00000000000000070

Recommendations for the assessment of metabolic dysfunction-associated fatty liver disease (MAFLD) in primary care: a consensus statement










"MASLD is the presence of excess triglyceride storage in the liver in the presence of at least one cardiometabolic risk factor"

- BMI or waist circumference
- Diabetes or impaired glucose tolerance
- Hypertension
- Elevated triglycerides
- Dyslipidemia

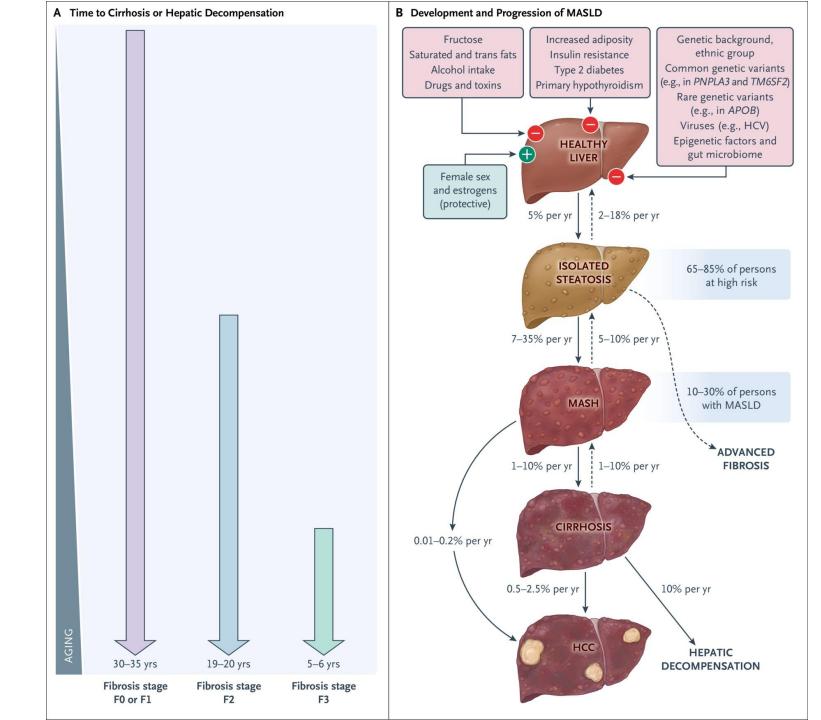






#### High and rising rates of disease globally

- One in three Australians have MASLD
- Two in three Australians with Type II DM or Obesity have MASLD
- Only 4-5% are aware they have MASLD


| Risk factor        | Prevalence of MAFLD <sup>28,33</sup> |  |  |
|--------------------|--------------------------------------|--|--|
| Overweight         | 30%                                  |  |  |
| Obesity            | 55%-75%                              |  |  |
| Type 2 diabetes    | 55%-60%                              |  |  |
| Dyslipidaemia      | 55%                                  |  |  |
| Hypertension       | 50%                                  |  |  |
| Metabolic syndrome | 70%                                  |  |  |

Roberts et al, MJA 2021 Lomanarco et al, Diabet Care 2021 Alqahtani et al, Hepatol Comm 2021

# Natural History of Steatotic Liver Disease and MASLD.

Targher G et al. N Engl J Med2025;393:683-698





## How do patients present?

#### 44 yo male

- Wife suggested "check up"
- Ht 180cm, Wt 90 kg BMI 27.8kg/m2
- BP 125/80 on irbesartan
- ALT 75, AST 40, Alb 44, Bili 12, Platelets 280
- Etoh: 20g x 3nights per week

#### **Clinical History**

Abnormal liver function tests

#### **Findings**

Moderate increased echogenicity of the liver is consistent with hepatic steatosis. No hepatic lesion. The portal vein is patent with antegrade flow.

Two mobile gallbladder calculi are present, largest 24 mm. The gallbladder is 3 mm in thickness with no tenderness on sono palpation. The common bile duct is 4 mm.

The pancreas is unremarkable. The spleen is mildly enlarged, 13.3 cm. No ascites. No hydronephrosis, renal masses or calculi. Non-aneurysmal abdominal aorta.

## How do patients present?

#### 44 yo male

- Wife suggested "check up"
- Ht 180cm, Wt 90 kg BMI 27.8kg/m2
- BP 125/80 on irbesartan
- ALT 75, AST 40, Alb 44, Bili 12, Platelets 280
- Etoh: 20g x 3nights per week

#### **Clinical History**

Abnormal liver function tests

#### **Findings**

Moderate increased echogenicity of the liver is consistent with hepatic steatosis. No hepatic lesion.

Two mobile gallbladder calculi are present, largest 24 mm. The gallbladder is 3 mm in thickness with no tenderness on sono palpation. The common bile duct is 4 mm.

The pancreas is unremarkable. The spleen is mildly enlarged, 13.3 cm. No ascites. No hydronephrosis, renal masses or calculi. Non-aneurysmal abdominal aorta.

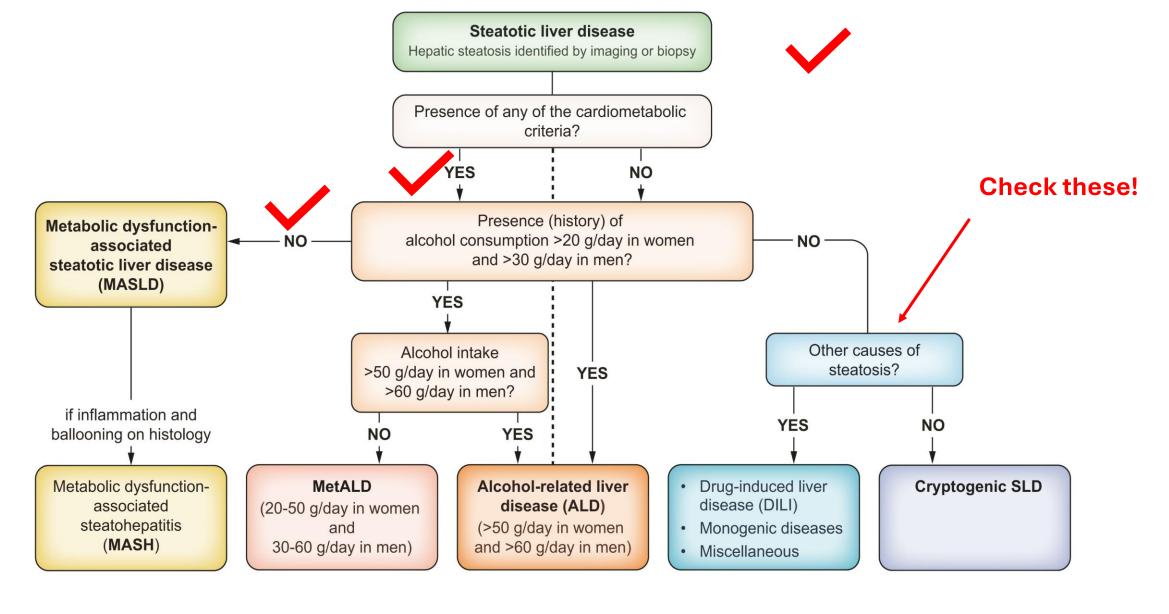
# How do patients present?

#### 44 yo male

- Wife suggested "check up"
- Ht 180cm, Wt 90 kg BMk27.8kg/m2
- BP 125/80 of irbesartan
- ALT 75, AST 40, Alb 44, Bili 12, Platelets 280
- Etoh: 20g x 3nights per week

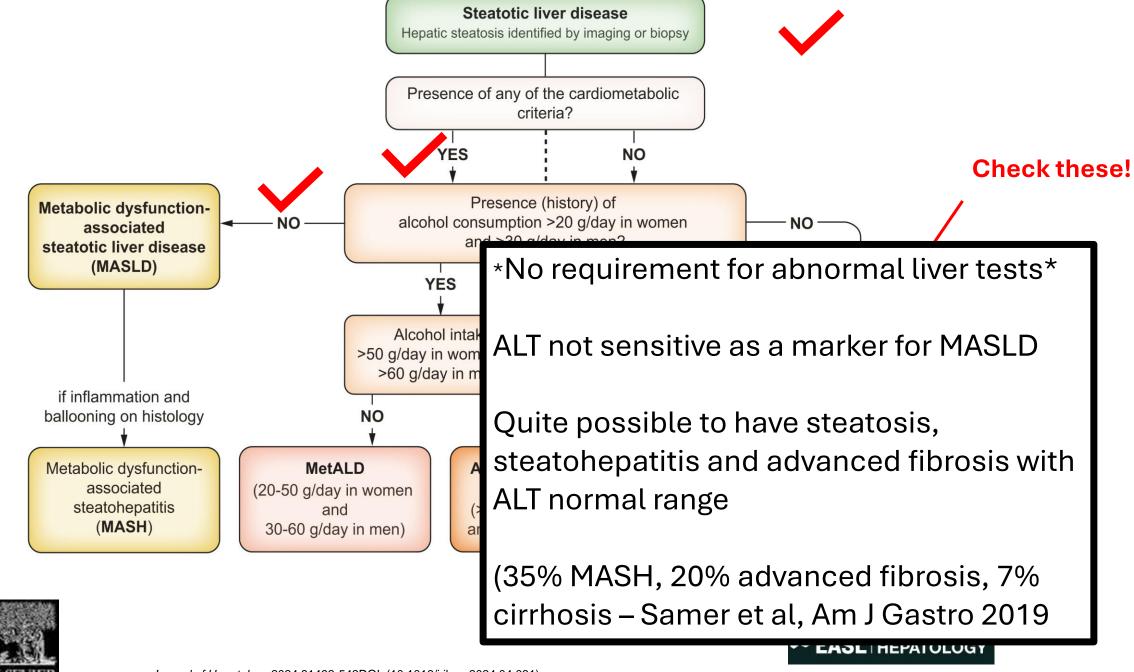
#### Is this MASLD?

#### Clinical History


Abnormal liver function tests

#### **Findings**

Moderate increased echogenicity of the liver is consistent with hepatic steatosis. No hepatic lesion.


Two mobile gallbladder calculi are present, largest 24 mm. The gallbladder is 3 mm in thickness with no tenderness on sono palpation. The common bile duct is 4 mm.

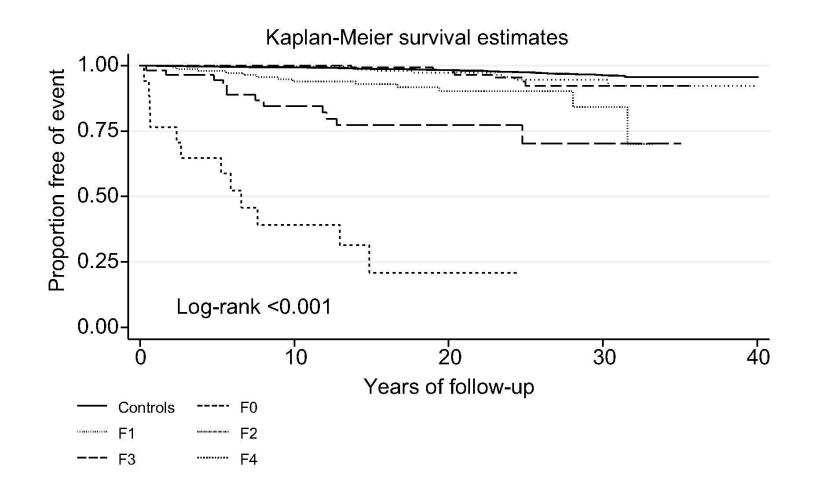
The pancreas is unremarkable. The spleen is mildly enlarged, 13.3 cm. No ascites. No hydronephrosis, renal masses or calculi. Non-aneurysmal abdominal aorta.

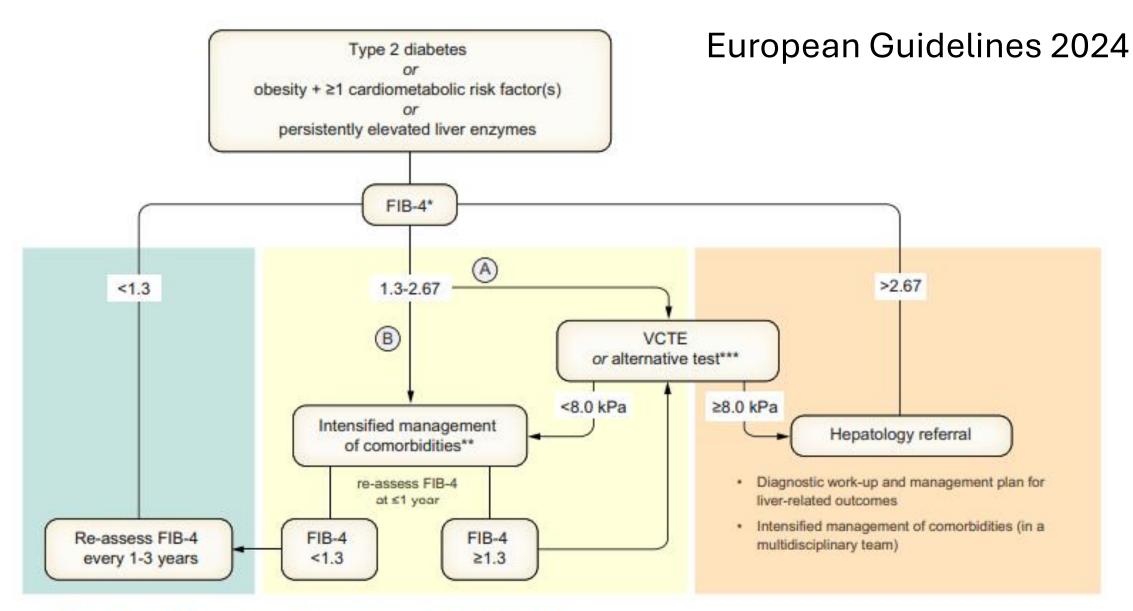









# Assessing for other causes of steatosis or elevated liver enzymes ... the "liver screen"

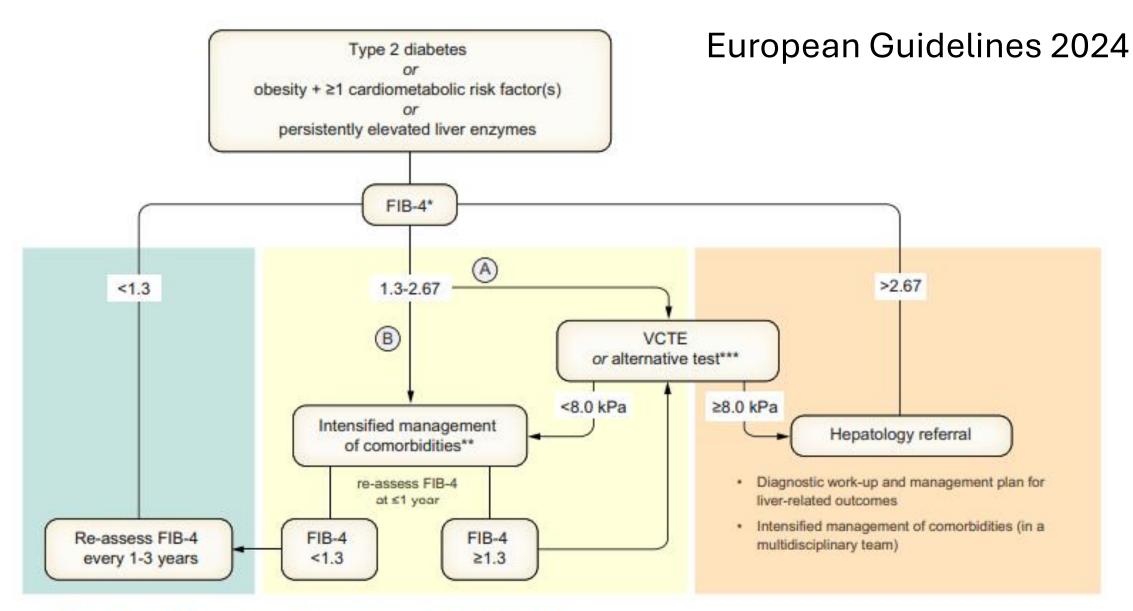

- Medications causing steatosis corticosteroids, amiodarone, valproate, tamoxifen
- Hepatitis C
- Hepatitis B
- Wilson's disease low ceruloplasmin, high 24 hour urinary copper
- Coeliac screening
- Iron studies (frequent hyperferritinemia)
- Alpha 1 AT
- Consider immune causes AIH, PBC, PSC
- (not CMV, EBV)



# MASLD without cofactors – what next?

- All practice guidelines recommend a non-invasive assessment of fibrosis
- The presence or absence of fibrosis is the strongest predictor of liver related outcomes
- Patients with advanced fibrosis selected for further liver care



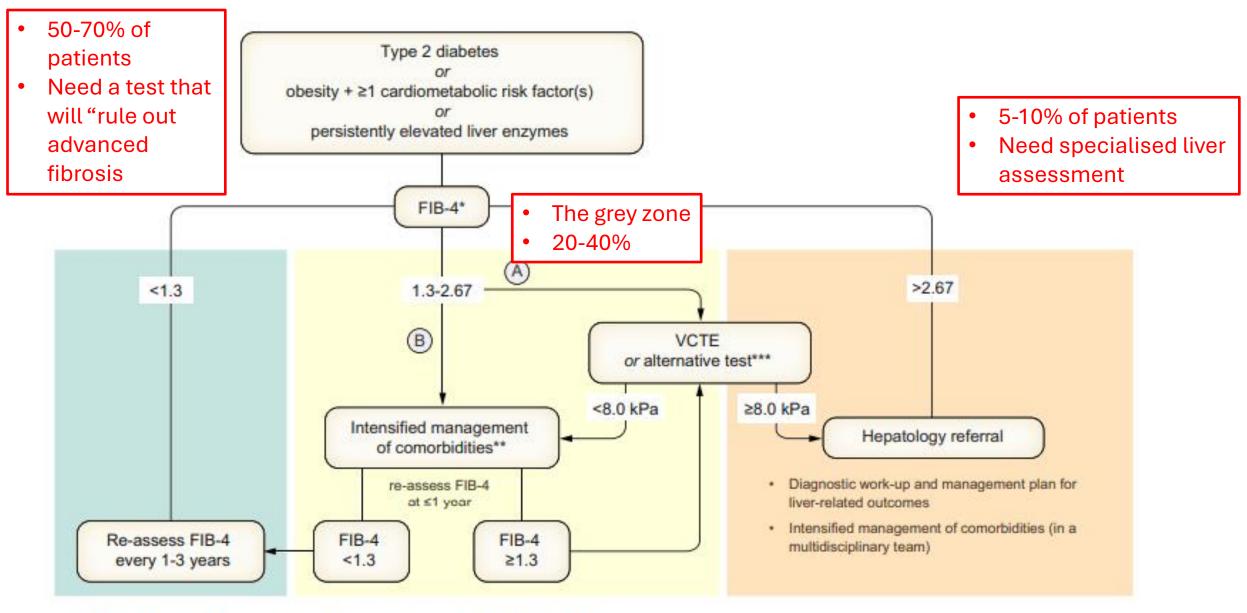



<sup>\*</sup> FIB-4 thresholds valid for age ≤65 years (for age >65 years: lower FIB-4 cut-off is 2.0)

<sup>\*\*</sup> e.g. lifestyle intervention, treatment of comorbidities (e.g. GLP1RA), bariatric procedures

<sup>\*\*\*</sup> e.g. MRE, SWE, ELF, with adapted thresholds

<sup>(</sup>A) and (B) are options, depending on medical history, clinical context and local resources



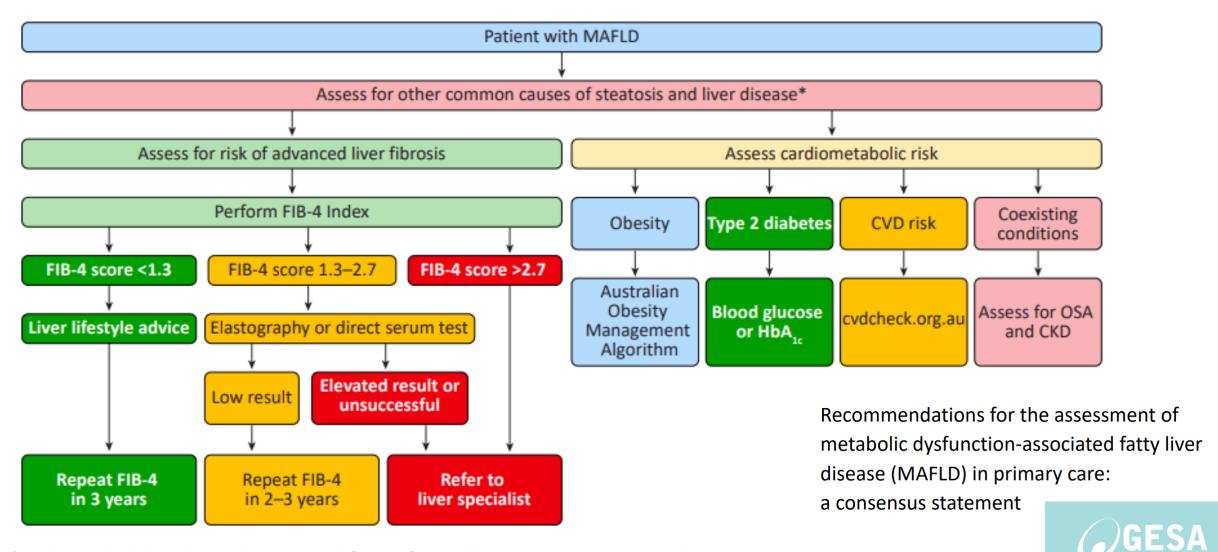

<sup>\*</sup> FIB-4 thresholds valid for age ≤65 years (for age >65 years: lower FIB-4 cut-off is 2.0)

<sup>\*\*</sup> e.g. lifestyle intervention, treatment of comorbidities (e.g. GLP1RA), bariatric procedures

<sup>\*\*\*</sup> e.g. MRE, SWE, ELF, with adapted thresholds

<sup>(</sup>A) and (B) are options, depending on medical history, clinical context and local resources




<sup>\*</sup> FIB-4 thresholds valid for age ≤65 years (for age >65 years: lower FIB-4 cut-off is 2.0)

<sup>\*\*</sup> e.g. lifestyle intervention, treatment of comorbidities (e.g. GLP1RA), bariatric procedures

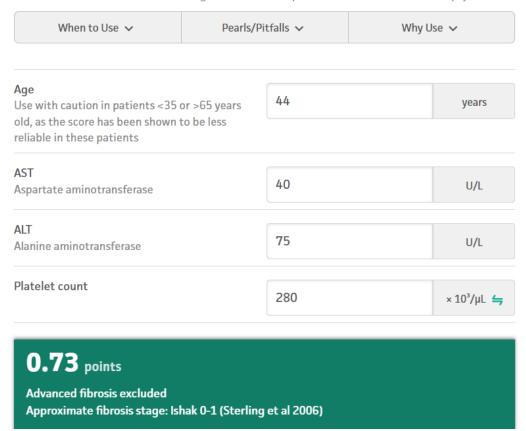
<sup>\*\*\*</sup> e.g. MRE, SWE, ELF, with adapted thresholds

A and B are options, depending on medical history, clinical context and local resources

Figure 2. Assessment algorithm for a patient presenting with MAFLD



<sup>\*</sup> Evaluate alcohol intake, medications, risk factors for viral hepatitis, and iron overload.


CKD = chronic kidney disease; CVD = cardiovascular disease; FIB-4 = Fibrosis 4; HbA $_{1c}$  = glycated haemoglobin; MAFLD = metabolic dysfunction-associated fatty liver disease; OSA = obstructive sleep apnoea.

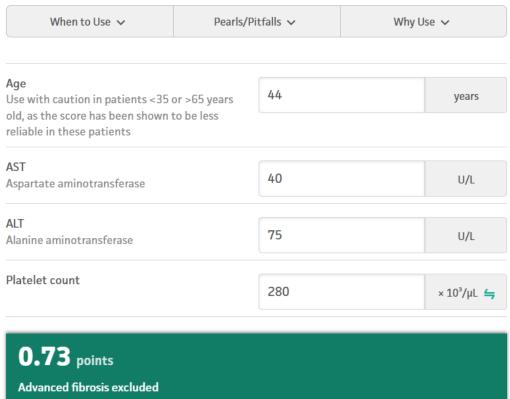
#### FIB-4

- Uses age, ALT, AST and platelets in calculation to group into low, intermediate and higher risk for advanced fibrosis
- Validated in multiple ethnicities
- Valid even with normal transaminases
- Can be affected by alcohol or ITP
- Inaccurate in those less than 35 years or >65 (uses a higher threshold)
- In a low risk population rules out advanced fibrosis ~ 97% NPV, PPV ~25%

#### Fibrosis-4 (FIB-4) Index for Liver Fibrosis

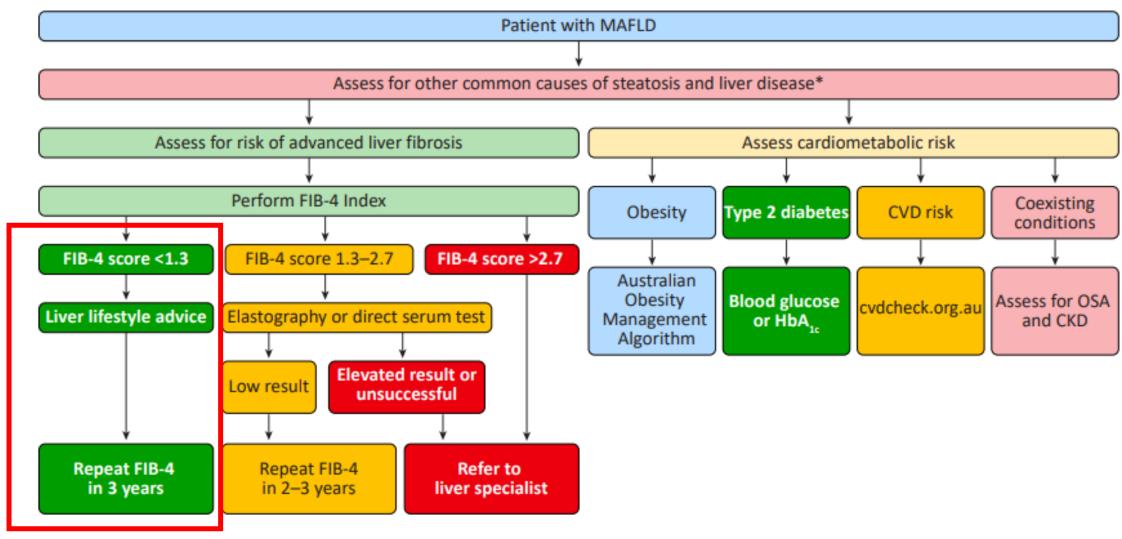
Noninvasive estimate of liver scarring in HCV and HBV patients, to assess need for biopsy.




### Back to our patient....

#### FIB-4

- Uses age, ALT, AST and platelets in calculation to group into low, intermediate and higher risk for advanced fibrosis
- Validated in multiple ethnicities
- Valid even with normal transaminases
- Can be affected by alcohol or ITP
- Inaccurate in those less than 35 years or >65 (uses a higher threshold)
- In a low risk population rules out advanced fibrosis ~ 97% NPV, PPV ~25%


#### Fibrosis-4 (FIB-4) Index for Liver Fibrosis

Noninvasive estimate of liver scarring in HCV and HBV patients, to assess need for biopsy.



Approximate fibrosis stage: Ishak 0-1 (Sterling et al 2006)

Figure 2. Assessment algorithm for a patient presenting with MAFLD



<sup>\*</sup> Evaluate alcohol intake, medications, risk factors for viral hepatitis, and iron overload.

CKD = chronic kidney disease; CVD = cardiovascular disease; FIB-4 = Fibrosis 4; HbA $_{1c}$  = glycated haemoglobin; MAFLD = metabolic dysfunction-associated fatty liver disease; OSA = obstructive sleep apnoea.

### What if the blood results were different?

#### Fibrosis-4 (FIB-4) Index for Liver Fibrosis

Noninvasive estimate of liver scarring in HCV and HBV patients, to assess need for biopsy.

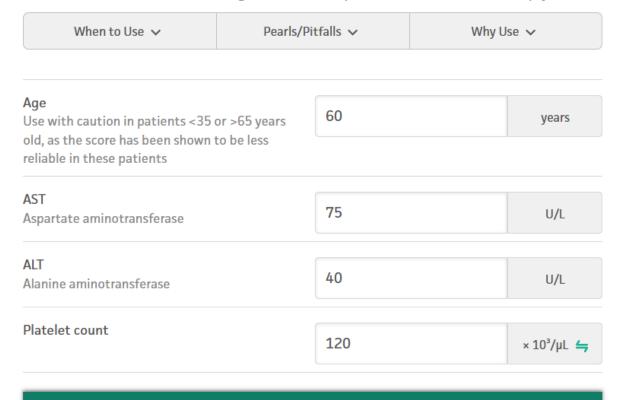
| Pearls/Pitfalls 🗸 |                       | Why Use 🗸      |  |
|-------------------|-----------------------|----------------|--|
| 1 >05 years       | l                     | years          |  |
| 75                | j                     | U/L            |  |
| 40                | )                     | U/L            |  |
| 12                | 20                    | × 10³/μL 悔     |  |
|                   | r >65 years o be less | r >65 years 60 |  |

**5.93** points

Advanced fibrosis (METAVIR stage F3-F4) likely (McPherson 2017) Approximate fibrosis stage: Ishak 4-6 (Sterling et al 2006)



Prognostic utility of Fibrosis-4 Index for risk of subsequent liver and cardiovascular events, and all-cause mortality in individuals with obesity and/or type 2 diabetes: a longitudinal cohort study


- FIB4 can predict future liver related events and overall mortality in MASLD
- Reductions in scores over time can be used to adjust risk

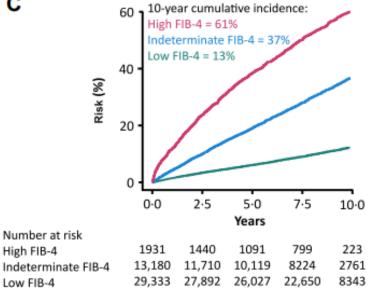
Anstee et al, Lancet Reg. Health Eur. 2024

#### What if the blood results were different?

#### Fibrosis-4 (FIB-4) Index for Liver Fibrosis

Noninvasive estimate of liver scarring in HCV and HBV patients, to assess need for biopsy.




**5.93** points

Advanced fibrosis (METAVIR stage F3-F4) likely (McPherson 2017) Approximate fibrosis stage: Ishak 4-6 (Sterling et al 2006)

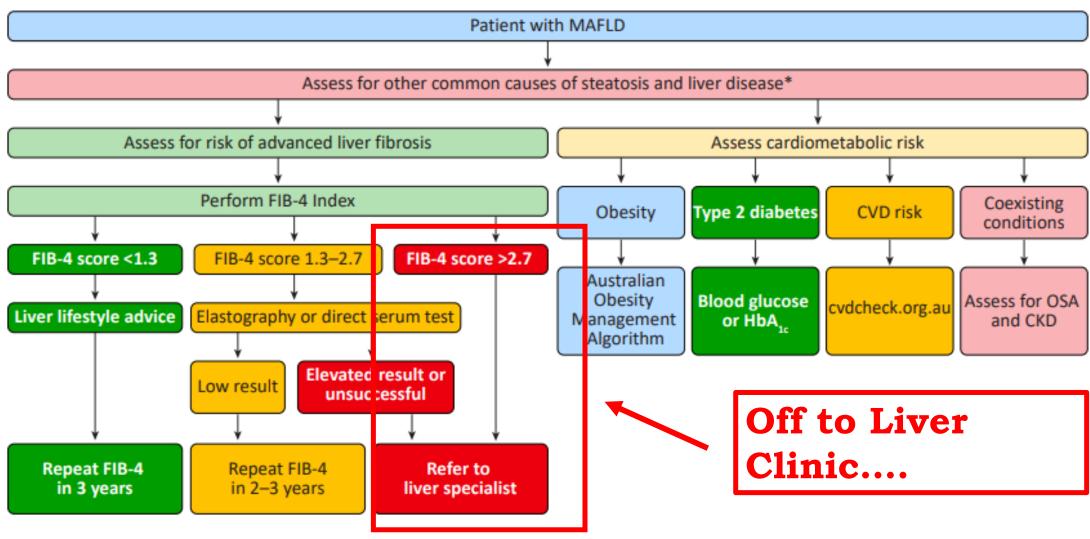


High FIB-4

Low FIB-4



High FIB-4 Indeterminate I Low FIB-4


Years

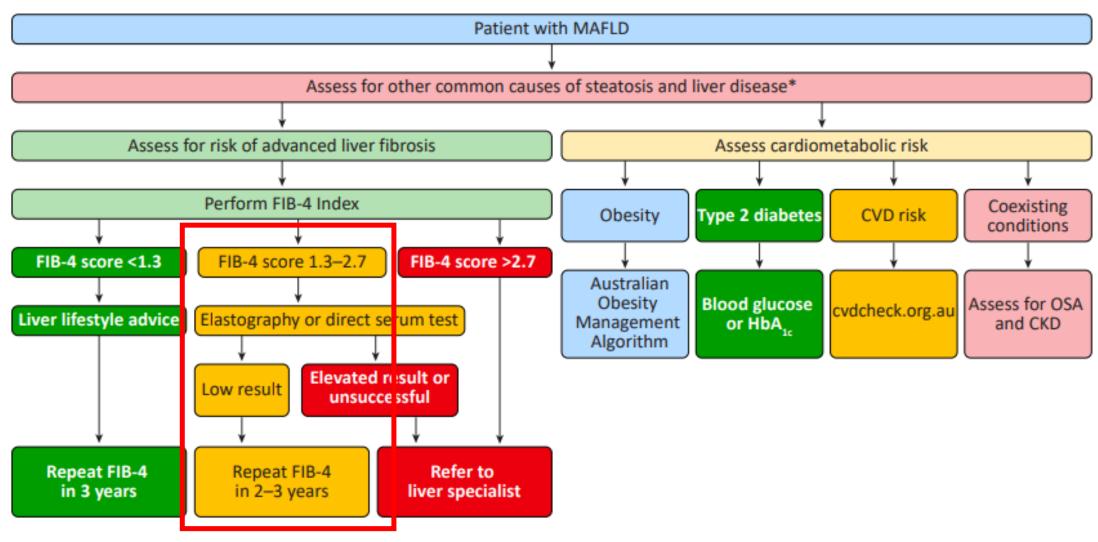
Prognostic utility of Fibrosis-4 Index for risk of subsequent liver and cardiovascular events, and all-cause mortality in individuals with obesity and/or type 2 diabetes. a longitudinal cohort study

- FIB4 can predict future liver related events and overall mortality in MASLD
- Reductions in scores over time can be used to adjust risk

Anstee et al, Lancet Reg. Health Eur. 2024

Figure 2. Assessment algorithm for a patient presenting with MAFLD




<sup>\*</sup> Evaluate alcohol intake, medications, risk factors for viral hepatitis, and iron overload.

CKD = chronic kidney disease; CVD = cardiovascular disease; FIB-4 = Fibrosis 4; HbA<sub>1c</sub> = glycated haemoglobin; MAFLD = metabolic dysfunction-associated fatty liver disease; OSA = obstructive sleep apnoea.

#### **Liver Clinic**

- Confirm or refute advanced fibrosis
  - Fibroscan (+/- biopsy)
- Confirm no other diagnosis (alcohol)
- Consider whether CSPH (Clinically Significant Portal Hypertension)
- Consider the role of HCC surveillance
- Consider suitability for clinical trials
- Management of decompensation
- Hospital based risk factor management Tertiary Obesity Management Service, Statewide Bariatric Service, Mood and Food Program, QUT Partnership Program (Type II DM)
- No personalised dietetic service for weight loss
- Low risk patients returned for holistic risk factor management in primary care

Figure 2. Assessment algorithm for a patient presenting with MAFLD



<sup>\*</sup> Evaluate alcohol intake, medications, risk factors for viral hepatitis, and iron overload.

CKD = chronic kidney disease; CVD = cardiovascular disease; FIB-4 = Fibrosis 4; HbA $_{1c}$  = glycated haemoglobin; MAFLD = metabolic dysfunction-associated fatty liver disease; OSA = obstructive sleep apnoea.

# What about the grey zone? About 1/3 of patients

- Need another test
  - Elastography
  - Serum test
  - (repeat FIB4 after intensive risk factor management)
  - Or hepatology assessment

#### Elastography

- Measures the "stiffness" of liver tissue, correlates with fibrosis – A sonic palpation
- Can be artificially elevated by inflammation, alcoholic hepatitis, recent food, heart failure or cholestasis
- Transient elastography = Fibroscan used in clinics
- Swear wave elastography usually available in radiology facilities
- Inter operator variability the challenges of knowing the local services
- Readings difficult to acquire with abdominal adiposity failure rate 10-30%
- No medicare rebate

Elastography



#### Biomarkers

### New noninvasive biomarkers of liver fibrosis the (2017) Enhanced Liver Fibrosis score (ELF score)

Hyaluronic acid (HA)

Procollagen III amino terminal peptide (PIIINP)

Tissue inhibitor of metalloproteinase 1 (TIMP-1)

Run as automated immunoassays using a serum sample

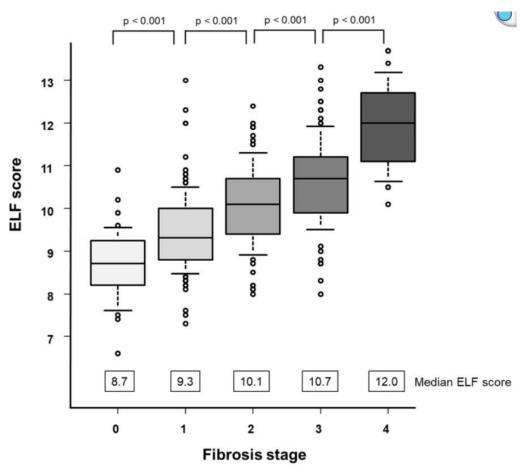
ELF Score<sup>\*T</sup> = 2.278 + 0.851 ln ( $C_{HA}$ ) + 0.751 ln ( $C_{PIIINP}$ ) + 0.394 ln ( $C_{TIMP-1}$ )

< 7.7: no to mild fibrosis

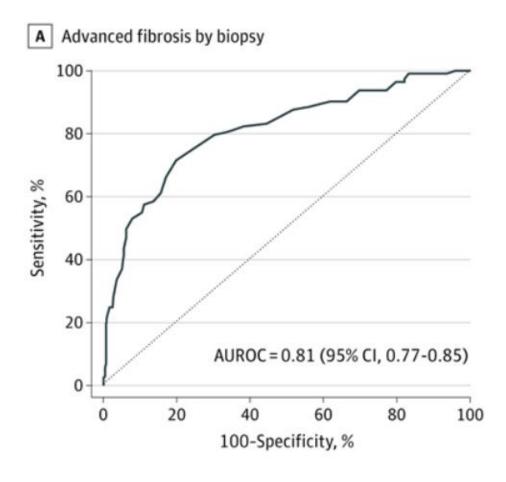
 $\geq$  7.7 – < 9.8: Moderate fibrosis

 $\geq$  9.8 – < 11.3: Severe fibrosis

≥ 11.3: Cirrhosis

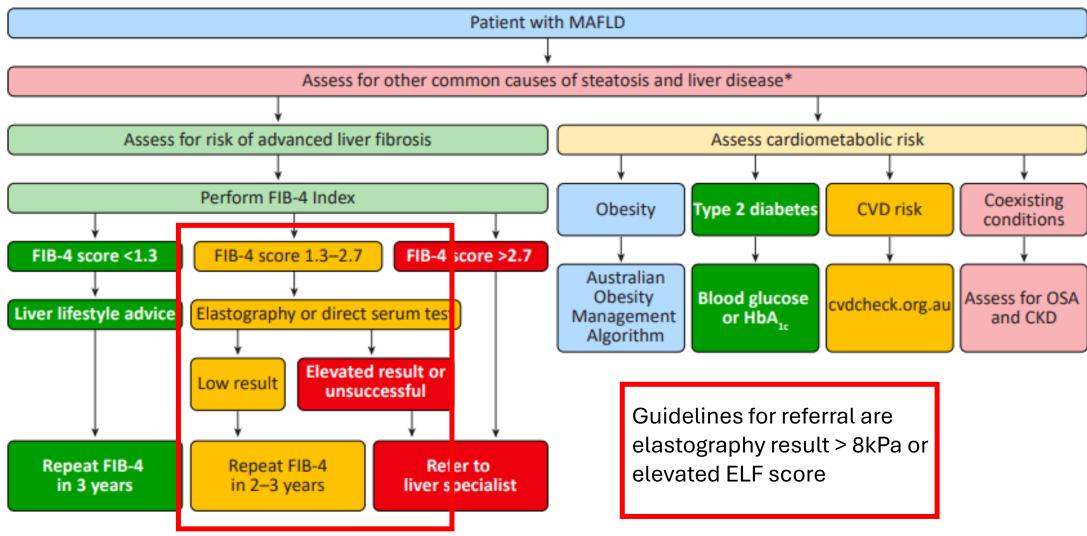

There is still a grey zone!

No medicare rebate


Current cost \$233 S+N

Request as "Serum Liver Fibrosis Markers"

# ELF score has similar accuracy to elastography




Studied in various biopsied CLD Tomaki et al, Diagnostics 2022



Study in biopsied MASLD Younossi et al, JAMA 2021

Figure 2. Assessment algorithm for a patient presenting with MAFLD



<sup>\*</sup> Evaluate alcohol intake, medications, risk factors for viral hepatitis, and iron overload.

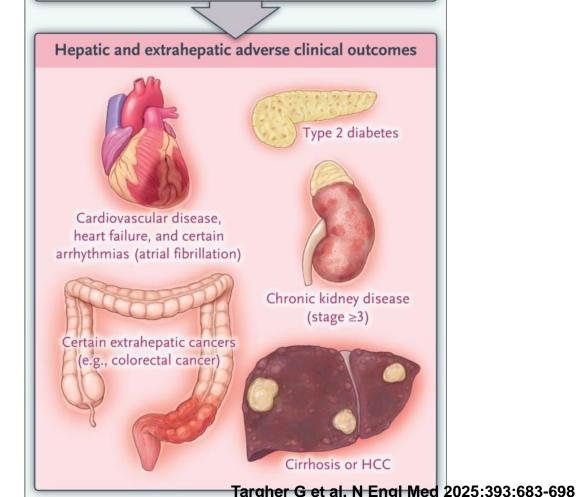
CKD = chronic kidney disease; CVD = cardiovascular disease; FIB-4 = Fibrosis 4; HbA $_{1c}$  = glycated haemoglobin; MAFLD = metabolic dysfunction-associated fatty liver disease; OSA = obstructive sleep apnoea.

# OK, so we have diagnosed MASLD and staged the fibrosis. What next?

- This is a multisystem disease
- Treatment revolves around managing all of the risk factors especially the insulin resistance and cardiovascular risks

### Approximate increase in the risk of new-onset adverse clinical outcomes

Type 2 diabetes (if no type 2 diabetes at baseline) —  $2.2\times$  Fatal or nonfatal cardiovascular disease —  $1.5\times$ 


Heart failure — 1.5×

Atrial fibrillation - 1.2×

CKD (stage  $\geq$ 3) — 1.5×

Extrahepatic cancers — 1.5×

Cirrhosis or HCC — 2-10×



#### Exercise

- Reduces liver fat content
- Reduces ALT
- Improves liver stiffness
- Reduces insulin resistance
- Improves dyslipidemia
- Improves adiponectin levels
- Improves sarcopoenia
- Improvements can occur independent of weight loss, but are heightened by weight loss

- Psychological benefits
- Cardiovascular benefits
- Social engagement
- Sleep benefits

#### Exercise

- Reduces liver fat content
- Reduces ALT
- Improves liver stiffness
- Reduces insulin resistance
- Improves dyslipidemia
- Improves adiponectin levels
- Improves sarcopoenia
- Improvements can occur independent of weight loss, but are heightened by weight loss

- Psychological benefits
- Cardiovascular benefits
- Social engagement
- Sleep benefits

Continued adherence is more important than exercise type – ideally a combination of aerobic and resistance training

#### Weight reduction

- Clear evidence of benefit from high quality clinical trials
- 5% body weight reduction reduces liver fat
- 7-10% body weight reduction reduces liver inflammation
- >10 % body weight reduction improves fibrosis scores

Studies with follow up out to 24 months tend to show regain and partial deterioration of liver lipid and stiffness scores after lifestyle intervention

#### Dietary intervention

- No clear difference in liver results between low fat vs low carb vs intermittent fasting
- Mediterranean-style diet consistently shows liver and CVS benefits even without weight loss
- Positive association with MASLD and sweet beverages
- Positive association with ultra-processed foods
- Protective effect of coffee consumption





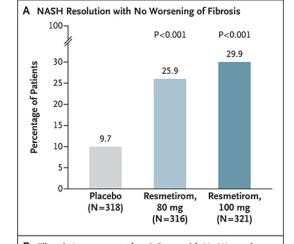
#### Alcohol

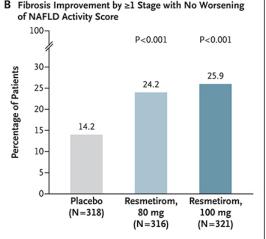
- Recommend abstinence from alcohol in cirrhosis
- In noncirrhotic MASLD, hard to recommend any safe level of consumption
- Moderate levels of consumption associated with up to twice the rate of progression in observational studies
- Discuss risks and recommend consumption as low as possible

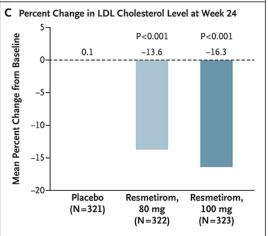
# Pharmacological interventions

Until recently, little evidence for any liver specific pharmacological interventions

- Resmetirom US TGA approved 2024
- Increasing data for GLP1
- Fibroblast growth factor 21 analogues in clinical trials

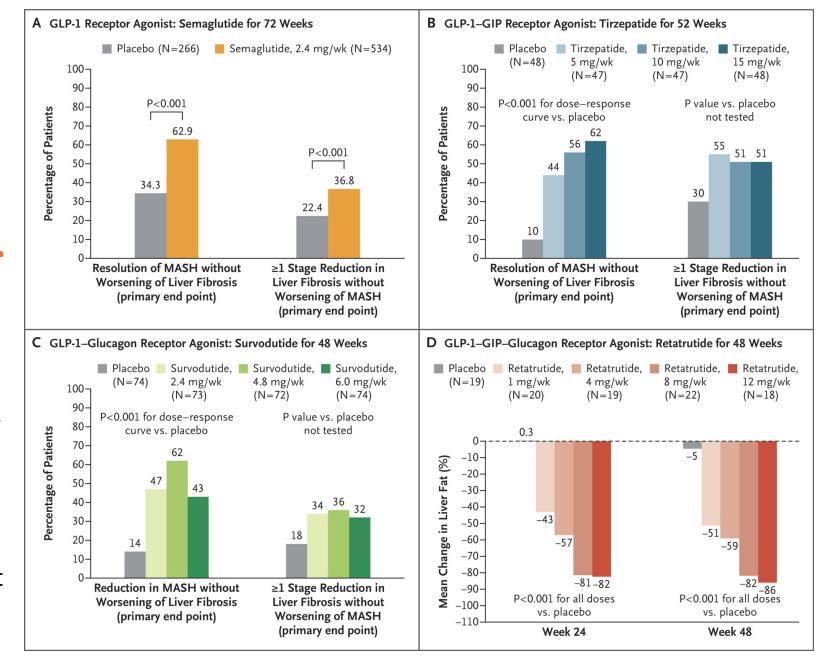




ESTABLISHED IN 1812 FEBRUARY 8, 2024 VOL. 390 NO. 6


# A Phase 3, Randomized, Controlled Trial of Resmetirom in NASH with Liver Fibrosis

S.A. Harrison, P. Bedossa, C.D. Guy, J.M. Schattenberg, R. Loomba, R. Taub, D. Labriola, S.E. Moussa, G.W. Neff, M.E. Rinella, Q.M. Anstee, M.F. Abdelmalek, Z. Younossi, S.J. Baum, S. Francque, M.R. Charlton, P.N. Newsome, N. Lanthier, I. Schiefke, A. Mangia, J.M. Pericàs, R. Patil, A.J. Sanyal, M. Noureddin, M.B. Bansal, N. Alkhouri, L. Castera, M. Rudraraju, and V. Ratziu, for the MAESTRO-NASH Investigators\*

- Oral, liver directed, thyroid hormone receptor agonist
- Thyroid hormone in the liver reduces lipogenesis, increases lipophagy and reduces fibrogenesis
- Included F1-F3 patients
- Week 52 data published, trial continues to 5 year
- Improvements in liver fat, fibrosis, LDL
- Side effects diarrhoea, nausea, pruritis








# GLP1 agonists

- Improved histology in MASH studies involving semaglutide and tirzepetide (RCT)
- Real world cohort studies show reduction in cirrhosis diagnosis and lower risk of HCC
- Newer agents in the pipeline
- TGA approval is for management of overweight and obesity with comorbidities



Targher G et al. N Engl J Med2025;393:683-698

# Fibroblast Growth Factor 21 analogues

- Still in clinical trial stage
- Targeting hepatic lipid metabolism, insulin sensitivity
- May reduce fibrosis stage in F2-3

Clinical Trial > Lancet Gastroenterol Hepatol. 2023 Dec;8(12):1080-1093. doi: 10.1016/S2468-1253(23)00272-8. Epub 2023 Oct 3.

Safety and efficacy of once-weekly efruxifermin versus placebo in non-alcoholic steatohepatitis (HARMONY): a multicentre, randomised, doubleblind, placebo-controlled, phase 2b trial

Stephen A Harrison <sup>1</sup>, Juan P Frias <sup>2</sup>, Guy Neff <sup>3</sup>, Gary A Abrams <sup>4</sup>, K Jean Lucas <sup>5</sup>, William Sanchez <sup>6</sup>, Sudhanshu Gogia <sup>7</sup>, Muhammed Y Sheikh <sup>8</sup>, Cynthia Behling <sup>9</sup>, Pierre Bedossa <sup>10</sup>, Lan Shao <sup>11</sup>, Doreen Chan <sup>12</sup>, Erica Fong <sup>12</sup>, Brittany de Temple <sup>12</sup>, Reshma Shringarpure <sup>13</sup>, Erik J Tillman <sup>12</sup>, Timothy Rolph <sup>12</sup>, Andrew Cheng <sup>12</sup>, Kitty Yale <sup>12</sup>; HARMONY Study Group

# Pharmacological interventions

# Treating the comorbidities in MASLD

- Obesity
- Type II DM
- Dyslipidemia

# Type II DM

- SGLT2-inhibitors have hepatoprotective effects in Type II DM
- Meta-analysis of cohort studies reassuring
- One RCT assessing histological end points at 48 weeks showing improvements

#### Sodium-Glucose Cotransporter 2 Inhibitor Use and Risk of Liver-Related Events in Patients With Type 2 Diabetes: A Meta-analysis of Observational Cohort Studies

Alessandro Mantovani, Riccardo Morandin, Maria Giovanna Lando, Veronica Fiorio, Grazia Pennisi, Salvatore Petta, Norbert Stefan, Herbert Tilg, Christopher D. Byrne, and Giovanni Targher

Diabetes Care 2025;48(6):1042-1052 | https://doi.org/10.2337/dc25-0282

#### SGLT2 Inhibitor Use and Liver-Related Events: A Meta-analysis

#### Methods:

- Eight cohort studies
- n=626,104 with T2DM

n=228.298 SGLT2 inhibitor new users n=397.806 other DM medication new users

Outcomes: SGLT2 Inhibitors vs. Other Diabetes Medication

Major Adverse Liver Outcomes

Liver-Related Death









Conclusions: SGLT2 inhibitor use was associated with significant risk reduction in major adverse liver outcomes in comparison with use of DPP-4 inhibitors, metformin, or pioglitazone but not GLP-1 receptor agonists.

DM, diabetes mellitus; DPP-4, dipeptidyl peptidase 4; GLP-1, glucagon-like peptide 1; HR, hazard ratio; SGLT2, sodium-glucose cotransporter 2.

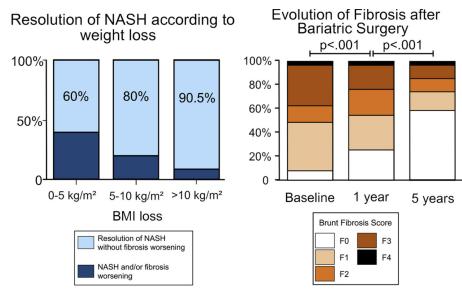
Randomized Controlled Trial > BMJ, 2025 Jun 4:389:e083735, doi: 10.1136/bmi-2024-083735.

Effect of dapagliflozin on metabolic dysfunctionassociated steatohepatitis: multicentre, double blind, randomised, placebo controlled trial

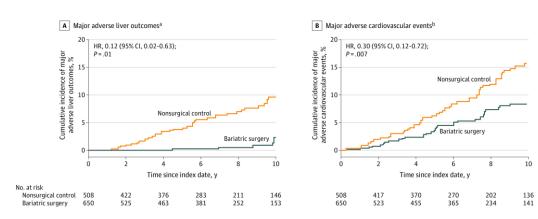
```
Jiayang Lin <sup>1 2 3 4</sup>, Yan Huang <sup>5 3 4</sup>, Bingyan Xu <sup>1 2 3 4</sup>, Xuejiang Gu <sup>6</sup>, Junlin Huang <sup>1 2 3 4</sup>,
Jia Sun <sup>7</sup>, Lijing Jia <sup>8</sup>, Jiang He <sup>9</sup> <sup>10</sup>, Chensihan Huang <sup>1</sup> <sup>2</sup> <sup>3</sup> <sup>4</sup>, Xueyun Wei <sup>1</sup> <sup>2</sup> <sup>3</sup> <sup>4</sup>
Jinjun Chen <sup>11</sup>, Xiaomin Chen <sup>12</sup>, Jingping Zhou <sup>13</sup>, Lixian Wu <sup>14</sup>, Peizhen Zhang <sup>15</sup> <sup>2</sup> <sup>3</sup> <sup>4</sup>,
Yaxin Zhu <sup>8</sup>, Huimin Xia <sup>6</sup>, Ge Wen <sup>16</sup>, Yating Liu <sup>1</sup> <sup>2</sup> <sup>3</sup> <sup>4</sup>, Shigun Liu <sup>1</sup>, Yanmei Zeng <sup>1</sup>, Lin Zhou <sup>1</sup>,
Hongxia Jia <sup>1</sup>, Hua He <sup>17</sup>, Yaoming Xue <sup>1</sup>, Fenglin Wu <sup>1</sup>, Huijie Zhang <sup>15</sup> <sup>2</sup> <sup>5</sup> <sup>3</sup> <sup>4</sup>
```

### Metformin

- Weight neutral
- No high quality evidence that improves MASLD histology but may be useful
- No indication for discontinuation unless decompensation or renal failure


# Dyslipidemia – Statins are safe

- No increased risk of hepatotoxicity in MASLD
- Undertreatment is frequent, vascular disease is the commonest cause of death in those without advanced fibrosis
- Observational studies suggest benefits in liver outcomes but no RCT with histological end points

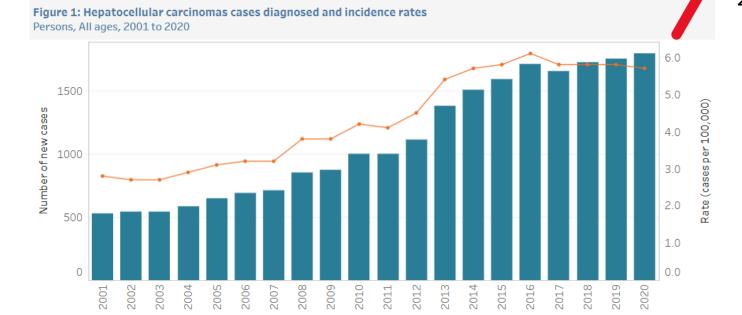

Chalasani et al, Gastro 2004 El-Serag eg al Gastro 2009 Blais et al, Dig Dis Sci 2016

# Surgical Interventions

- Bariatric surgery (when indicated) can be associated with long term improvements in MASLD histology
- Prospective (non RCT) studies show improved liver outcomes
- Beware of established cirrhosis and alcohol risks



\*single centre, patients with severe obesity Lassalilly et al, Gastro 2020




\*baseline MASH F1-3, non randomised Aminean et al, JAMA 2021

### Hepatocellular Carcinoma

- Rapidly increasing in incidence, 5 year survival low
- Cirrhotic patients should be in a surveillance program unless not appropriate for age and stage
- Non-cirrhotic HCC is "a thing" especially in older, diabetic males
- Incidence doesn't warrant surveillance, but lesions should be investigated (multiphase CT or MRI)
- Normal AFP doesn't rule out malignancy

Figure 1 provides the number of cases and rates for the selected cancer



Number of new cases

#### AIHW

Australian Institute of Health and Welfare (2024) <u>Cancer data in</u>
Australia, AIHW, Australian Government, accessed 05 October 2025.

## Summary

- MASLD is the liver manifestation of the metabolic syndrome and reflects a multisystem disease
- Common and becoming more common
- Assess for other causes of liver dysfunction and address these
- Assess fibrosis stage to risk stratify FIB4 +/- other tests
- Manage the risk factors physical activity, diet quality, weight, insulin resistance, dyslipidemia, smoking
- Liver specific treatments are coming but patients need multisystem care
- General Practice is vital for the holistic risk factor management, preventative care needed for this condition
- Who to refer?

## Summary

- MASLD is the liver manifestation of the metabolic syndrome and reflects a multisystem disease
- Common and becoming more common
- Assess for other causes of liver dysfunction and address these
- Assess fibrosis stage to risk stratify FIB4 +/- other tests
- Manage the risk factors physical activity, diet quality, weight, insulin resistance, dyslipidemia, smoking
- Liver specific treatments are coming but patients need multisystem care
- General Practice is vital for the holistic risk factor management, preventative care needed for this condition
- Who to refer?

- Uncertainty re diagnosis
- Uncertainty re fibrosis stage
- Advanced fibrosis

## Patient support and resources

GE Society Australia https://www.gesa.org.au/resources/patient-resources/



#### What is fatty liver disease?

"Fatty liver disease" is a condition where fat builds up in the liver. When too much fat is stored in the liver, it can lead to liver scarring, or "cirrhosis". Fatty liver is very common and affects about a third of Australian adults.

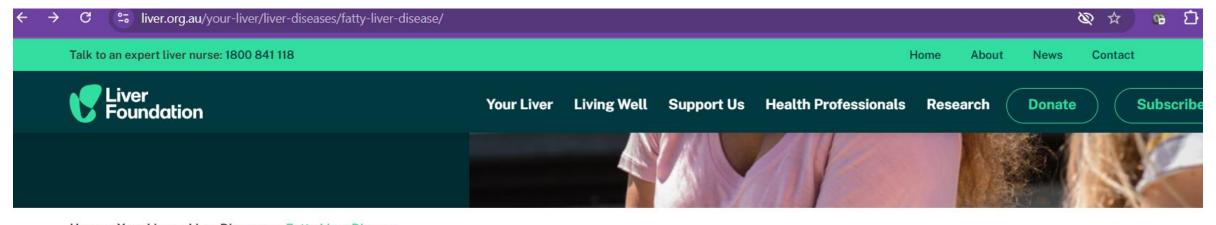
#### What are the symptoms?

Most people don't have any symptoms. Fatty liver sometimes causes abdominal (belly) pain and fatigue (tiredness), but this is rare. It doesn't cause nausea or intolerance to fatty foods.

#### Why does fatty liver need treatment?

Information about

### **Fatty Liver Disease**




#### What is MAFLD?

Metabolic (dysfunction)-associated fatty liver disease (MAFLD), which used to be known as non-alcoholic fatty liver disease (NAFLD), is the most common form of fatty liver disease. It can range in severity from mild, with no inflammation (damage), to severe, with inflammation in

## Patient support and resources

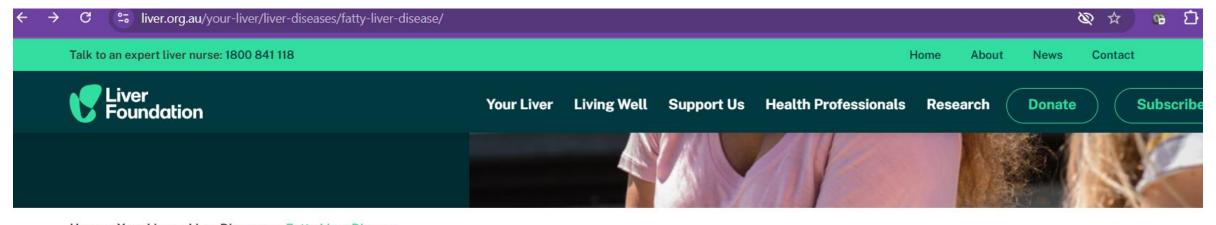
Australian Liver Foundation (https://liver.org.au/)



Home > Your Liver > Liver Diseases > Fatty Liver Disease



### **Key points**


- · About 1 in every 3 Australian adults has fatty liver disease
- · It means too much fat has built up in the liver

# Your Liver About The Liver + Symptoms +

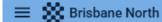
**Liver Diseases** 

## Patient support and resources

Australian Liver Foundation (https://liver.org.au/)



Home > Your Liver > Liver Diseases > Fatty Liver Disease




### **Key points**

- · About 1 in every 3 Australian adults has fatty liver disease
- · It means too much fat has built up in the liver

# Your Liver About The Liver + Symptoms +

**Liver Diseases** 





#### Brisbane North

Medical
Assault or Abuse
Cardiology
Dermatology

Diabetes

Endocrinology

Gastroenterology

Acute Abdominal Pain in Adults

B12 Deficiency

Bowel Cancer Screening

Chronic Abdominal Pain in Adults

Bowel Polyp Surveillance

Coeliac Disease in Adults

Colorectal Symptoms

Constipation in Adults

Diarrhoea in Adults

Dysphagia

Dyspepsia and GORD

Enteral Feeding Tubes in Adults

Inflammatory Bowel Disease (IBD)

Irritable Bowel Syndrome (IBS)

Abnormal Liver Function Tests

#### Fatty Liver

Liver Conditions

Hepatitis B

Hepatitis C (HCV)

Hereditary Haemochromatosis and Raised Ferritin

Incidental Liver and Spleen Lesions

Gastroenterology Requests

Q Search HealthPathways

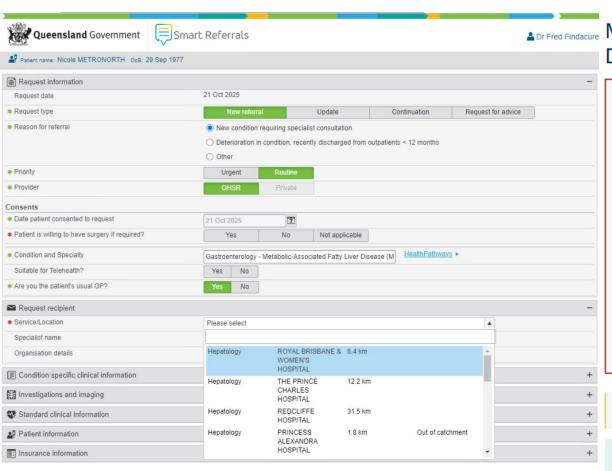
1 / ... / Liver Conditions / Fatty Liver



#### **Fatty Liver**

See also Abnormal Liver Function Tests.

#### **Background**


About fatty liver ∨

#### Assessment

- Consider fatty liver in a patient with an incidental finding of non-specific elevated liver enzymes or hepatic steatosis on ultrasound.
- 2. Take a history:
  - Check for signs and symptoms of liver disease ♥.
  - Consider risk factors for metabolic dysfunction-associated fatty liver disease (MAFLD) and related co-morbidities ✓.
  - · Assess alcohol consumption and other lifestyle factors e.g., physical activity, smoking, diet.
  - People with obesity and MAFLD should be assessed in accordance with the Australian Obesity Management Algorithm ☑.
- 3. Examination:
  - · Check vital signs.
  - Measure height and weight and calculate BMI v.
  - · Check abdomen for:
    - hepatomegaly (reflecting chronic liver disease)
    - o a hard, irregular liver outline (reflecting cirrhosis)
    - o splenomegaly or ascites (reflecting portal hypertension)
    - o masses (reflecting hepatocellular carcinoma (HCC))
    - o tenderness (suggestive of pathology other than MAFLD)
  - Examine for signs of severe liver disease ♥.
- 4. Investigation:
  - Arrange baseline investigations ∨.
- Arrange further investigations 

   if indicated to exclude other causes of liver disease e.g., hepatitis B (HBV), hepatitis C (HCV), haemochromatosis, autoimmune liver disease. See also Abnormal Liver Function Tests.
- Diagnose MAFLD presence of hepatic steatosis (with ultrasound the first line test to diagnose steatosis) plus with one of the following:
  - Overweight or obesity (defined as BMI ≥ 25kg/m² in Caucasians, or BMI ≥ 23 kg/m² in Asians)
  - Type 2 diabetes
  - Lean/normal weight with the presence of at least 2 metabolic risk abnormalities 
     ✓.







Resize font

Metro North Health

Refer your patient Hospitals & services Health professionals

Research Get involved

Careers

Search...

Home / Refer your patient / Hepatology / Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD) also MASLD, formerly NAFLD

#### **▲** Dr Fred Findacure Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD) also MASLD, formerly NAFLD

+ Other Hepatology conditions

#### Emergency department referrals

All urgent cases must be discussed with the on call Registrar to obtain appropriate prioritisation and treatment. Contact through:

- Royal Brisbane and Women's Hospital (07) 3646 8111
- The Prince Charles Hospital (07) 3139 4000
- Redcliffe Hospital (07) 3883 7777
- Caboolture Hospital (07) 5433 8888

Urgent cases accepted via phone must be accompanied with a written referral and a copy faxed immediately to the Central Patient Intake Unit: 1300 364 952.

Potentially life-threatening symptoms suggestive of:

- Acute severe GI bleeding
- · Acute liver failure: (acutely abnormal liver blood tests in absence of cirrhosis, associated with development of coagulopathy and hepatic encephalopathy)
- Sepsis in a patient with cirrhosis
- · Severe encephalopathy in a patient with liver disease
- · New significant renal dysfunction in a patient with cirrhosis

#### Send referral

Hotline: 1300 364 938

#### Electronic:

GP Smart Referrals (preferred)

eReferral system templates

Medical Objects ID: MQ40290004P

HealthLink EDI: qldmnhhs

Metro North Central Patient Intake Aspley Community Centre 776 Zillmere Road ASPLEY OLD 4034

#### Health pathways ?

Access to Health Pathways is free for clinicians in Metro North Brisbane.

For login details email:

healthpathways@brisbanenorthphn.

org.au

Login to Brisbane North Health

Pathways:

brisbanenorth.healthpathwayscomm

unity.org

#### Locations

Caboolture Hospital

Redcliffe Hospital

#### Does your patient wish to be referred? ?

#### Minimum referral criteria

Does your patient meet the minimum referral criteria?

#### Category 1

Appointment within 30 days is desirable

- MAFLD with concerning features
  - o Evidence of liver decompensation (e.g. jaundice and/or ascites and/or encephalopathy)